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Abstract

The method of approximate approximations is based on generating functions representing

an approximate partition of the unity. In the present paper this method is used for the

numerical solution of the Poisson equation and the Stokes system in Rn (n = 2, 3). The

corresponding approximate volume potentials will be computed explicitly in these cases,

containing a one-dimensional integral, only. Numerical simulations show the efficiency of the

method and confirm the expected approximation of essentially second order, depending on the

smoothness of the data.
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system, Stokes potentials
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1 Introduction

In 1991, V. Maz’ya developed an approximation method called the method of

approximate approximations [9]. Here a given function f : R −→ R is approximated

by a linear combination fh (step size h > 0) of radial smooth exponentially decreasing

basis functions [7, 11, 12]. These basis functions, in contrast to splines, perform

an approximate partition of the unity, only, hence do not converge as the step

size h goes to zero [10, 13]. This lack of the convergence is not important since

the approximation error can be kept below machine precision with help of certain

parameters. An enormous advantage of the method is the smoothness and the

simplicity of the basis functions, which can be generalized without problems to the

multi-dimensional case due to their radial shape [11]. Another, and probably the most

important advantage is the possibility to calculate exactly the values of almost all

relevant operators in mathematical physics when applied to these basis functions [13].
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Moreover, the method of approximate approximations can be used for the numerical

solution of Cauchy problems for linear partial differential equations (PDEs) in Rn,

whenever a potential theory is available [4, 8, 15]. In these cases exact formulas for

the approximate convolution type integrals (volume potentials) can be presented, if

the right hand side f of the PDE is approximated by fh. These formulas, instead

of a multi-dimensional integration, contain a one-dimensional integral, only [1, 2].

Finally, the method of approximate approximations can be applied successfully for

the numerical solution of boundary value problems (Boundary Point Method, see

[6, 13, 14]), and, using modified Hermite polynomials, can be performed with an

essentially general order of approximation [13]. These last two points are not covered

here.

In the present paper the method of approximate approximations is introduced

and carried out explicitly for two important Cauchy problems in Rn, i.e. the Poisson

equation −∆v = f in Rn (n = 2, 3) and the Stokes system −∆u + ∇p = f in R2,

div u = 0 in R2.

After this introduction, in Chapter 2 we introduce the method of approximate

approximations in one dimension, following the lines in [15]. With help of Fourier

expansion we explain the notion of an approximate partition of the unity, using

Gaussian bell curves as basis functions. This leads us to the approximation fh (h > 0)

of a given function f : R −→ R, see (3). The important error estimate between f

and fh is established in Lemma 2.2. It has the form O(h2) + δ with δ << 1 and is

therefore of essentially second order. The chapter closes with the definition of the

n-dimensional approximation, see (4).

In Chapter 3 we consider the Poisson equation −∆v = f in Rn (n = 2, 3). This

PDE is of elliptic type and belongs to the most important PDEs of mathematical

physics. Given f ∈ C1
0(Rn), a solution of the Poisson equation is given by the

volume potential V f (see (6)), a convolution type integral containing the fundamental

solution (7). Now replacing f by fh (h > 0), we obtain an approximate solution vh

in the form

vh(x) = V fh(x) =
∑
m∈Zn

Sm,h(x)f(hm),

where in Theorem 3.1 (n = 2) and in Theorem 3.2 (n = 3) the weights Sm,h(x) are

calculated exactly. As mentioned above, these weights contain a one-dimensional
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integral, only.

In Chapter 4, the numerical simulations confirm impressively the accuracy and

the expected approximation of essentially second order, both for n = 2 and n = 3.

Chapter 5 deals with the Stokes system −∆u +∇p = f in R2, div u = 0 in R2.

This system is important in fluid dynamics and describes the steady motion of a

viscous incompressible fluid in the plane, assuming small velocity gradients (creeping

flow) such that the nonlinear convective term (u ·∇)u in the Navier-Stokes equations

can be neglected. Since a (hydrodynamical) potential theory for the Stokes system is

available [3], we can proceed as follows: Using the given right hand side f = (f1, f2)
T

we define the vector function F := (F1, F2, F3)
T = (f1, f2, 0)T and represent the

Stokes system in the form Sup = F in R2 with the formal Stokes operator S, compare

(8). Then a solution (u, p)T of the Stokes system is given by the hydrodynamical

volume potential V F (see (10)). Now replacing each component Fj (j=1,2,3) of the

given function F by the approximation F h
j , (see (13)), we obtain an approximate

solution
(
uh, ph

)T
=
(
uh1 , u

h
2 , p

h
)T

in the form(
uh, ph

)T
(x) =

∑
m∈Z2

Am,h(x)F (hm),

where Am,h(x) denotes a 3 x 3 - matrix of weights. In Theorem 5.1 and in Theorem 5.2

the elements of this matrix are calculated exactly for the velocity field uh =
(
uh1 , u

h
2

)T
and the pressure function ph, respectively.

Finally, in Chapter 6, the numerical simulations confirm the accuracy and the

expected approximation of essentially second order also for the two-dimensional

velocity vector.

2 An Approximate Partition of the Unity

In the present chapter we introduce the reader into the method of approximate

approximations on the real line R and prove an important error estimate between a

given function f : R −→ R and its approximation.

We consider the Gaussian probability density ϕµ,σ of the normal distribution with
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expectation value µ ∈ R and variance σ2 > 0, defined by

R 3 x 7−→ ϕµ,σ(x) =
1√

2πσ2
exp

(
−(µ− x)2

2σ2

)
. (1)

The function ϕµ,σ is always positive, it is C∞ in R, it takes its maximum value

at x = µ, and it has two turning points at x = µ ± σ. So the variance σ2 somehow

represents a measure of the thickness of the Gaussian bell ϕµ,σ.

Since ϕµ,σ is a probability density3 on R, we find:

+∞∫
−∞

ϕµ,σ(x)dx = 1.

Applying the rectangle rule, we can approximate the above integral by∑
k∈Z

ϕµ,σ(k) ≈ 1.

Now the sum on the left-hand side as a function of µ, i.e.

R 3 µ 7→ φσ(µ) :=
1√

2πσ2

∑
k∈Z

exp

(
−(µ− k)2

2σ2

)
,

forms the starting point of our consideration.

In a first step, we want to investigate the deviation of the function φσ from the

constant 1. To do so, we use the Fourier series expansion of φσ. Since φσ is an even

function with period p = 1, its Fourier series expansion is given by

φσ(µ) =
a0
2

+
∞∑
m=1

am cos(2mπµ), |µ| < 1

2
.

Lemma 2.1 For the Fourier coefficients am in the above series, we have

am = 2 exp(−2σ2m2π2),m ∈ N0.

3http://www.probabilityformula.org/probability-density-function.html
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Proof: The Fourier coefficients of the above series are defined by:

am = 2

1/2∫
−1/2

φσ(µ) cos(2mπµ)dµ , m ∈ N0.

For m = 0 we have:

a0 =
2√

2πσ2

∑
k∈Z

1/2∫
−1/2

exp

(
−(µ− k)2

2σ2

)
dµ.

Substituting t =
µ− k√

2σ
, hence dt = dµ√

2σ
, yields:

a0 =
2
√

2σ√
2πσ2

∑
k∈Z

(1/2−k)/
√
2σ∫

(−1/2−k)/
√
2σ

exp(−t2)dt =
2√
π

+∞∫
−∞

exp(−t2)dt = 2 ,

since4

1√
π

∞∫
−∞

exp(−t2) = 1.

Analogously, for m ∈ N, we obtain:

am =
2√
π

∑
k∈Z

(1/2−k)/
√
2σ∫

(−1/2−k)/
√
2σ

exp(−t2)cos(2mπ(
√

2σt+ k))dt

=
2√
π

+∞∫
−∞

exp(−t2) cos(2mπ
√

2σt)dt ,

4https://jakubmarian.com/integral-of-exp-x2-from-minus-infinity-to-infinity/
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using the addition formula cos(α + β) = cosα cos β − sinα sin β. Thus it follows5

am = 2 exp(−2σ2m2π2)

also for all m ∈ N, and the lemma is proved.

Using the above lemma we can compute the deviation of the function φσ from the

constant 1. Since a0 = 2, we find:

φσ(µ) = 1 +
∞∑
m=1

2 exp(−2σ2m2π2) cos(2mπµ),

and thus the estimate

|φσ(µ)− 1| ≤ 2
∞∑
m=1

exp(−2σ2m2π2).

Let us illustrate the right-hand side of this inequality for the values σ = 1
2
, σ = 1

and σ = 2.

Because of the strong exponential decay, we find:

∞∑
m=1

2 exp(−2σ2m2π2) ≈


10−2, σ =

1

2

10−9, σ = 1

10−34, σ = 2

.

Analogously, for the derivatives:

φ′σ(µ) = −4π
∞∑
m=1

m exp(−2σ2m2π2) sin(2mπµ),

φ′′σ(µ) = −8π2

∞∑
m=1

m2 exp(−2σ2m2π2) cos(2mπµ),

5http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html
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we obtain:

|φσ(µ)′| ≈


10−1, σ =

1

2

10−6, σ = 1

10−34, σ = 2

and |φ′′σ(µ)| ≈


10−1, σ =

1

2

10−7, σ = 1

10−33, σ = 2

.

Now, let us fix σ := 1 and consider the function

φ(µ) := φ1(µ) =
1√
2π

∑
k∈Z

exp(−(µ− k)2

2
) (2)

as an approximate partition of the unity (φ(µ) ≈ 1), in contrast to, for example,

ψ(µ) :=
∑
k∈Z

ψk(µ)

with the piecewise linear spline

ψk(µ) =


µ+ 1− k, k − 1 ≤ µ ≤ k

0, |µ− k| ≥ 1

−µ+ 1 + k k ≤ µ ≤ k + 1

,

which defines an exact partition of the unity (ψ(µ) = 1). Figure 1 and Figure 2

show an illustration of these functions.

In the following, we use this function to approximate a given function f : R −→ R.

To do so, chose h > 0 and define:

fh(x) :=
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)
f(kh). (3)

Since we are using an approximate partition of the unity, only, we cannot expect

convergence of the resulting sequence if h tends to zero. Anyway, let us study the

error:

εh(x) := fh(x)− f(x), as h −→ 0 .
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Figure 1: Gaussian kernel: Approximate partition of the unity

Figure 2: Hat function: Exact partition of the unity
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In the following, the space Cm
b (R) contains functions having bounded continuous

derivatives on R up to the order m ∈ N.

Lemma 2.2 Let f ∈ C2
b (R), h > 0, and fh defined by (3). Then the error εh(x)

satisfies in x ∈ R the following estimate:

|εh(x)| ≤ h2

2
||f ′′||∞

(∣∣∣φ(x
h

)∣∣∣+
∣∣∣φ′′ (x

h

)∣∣∣)+ h |f ′(x)|
∣∣∣φ′ (x

h

)∣∣∣+ |f(x)|
∣∣∣φ(x

h

)
− 1
∣∣∣

= O(h2) + δ.

Here, φ is the function defined by (2), ||f ||∞ := ess supx∈R|f(x)| is the norm

in L∞(R), and δ is some very small positive constant.

Proof: We use the decomposition:

εh(x) = fh(x)− f(x)

=
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)
f(kh)− f(x)

− 1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)
f(x)

+
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)
f(x)

=
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)

(f(kh)− f(x)) + f(x)

×

(
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)
− 1

)

εh(x) =
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)

(f(kh)− f(x)) + f(x)
(
φ
(x
h

)
− 1
)

=: S1(x) + S2(x).
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We have:

S1(x) =
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)

(f(kh)− f(x)) ,

and the Taylor expansion of f(kh) at the point x yields:

f(kh)− f(x) = (kh− x) f ′(x) +
(kh− x)2

2
f ′′(ζh),

with some ζh ∈ R between x and kh. It follows:

S1(x) =
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)(

(kh− x) f ′(x) +
(kh− x)2

2
f ′′(ζh)

)

=
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)

(kh− x) f ′(x)

+
1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)

(kh− x)2

2
f ′′(ζh) =: s1(x) + s2(x).

Since

φ′
(x
h

)
=

1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)
kh− x
h

,

for the first summand, we find:

s1(x) = hf ′(x)φ′
(x
h

)
.

From

φ(µ) =
1√
2π

∑
k∈Z

exp

(
−(µ− k)2

2

)
,

φ′(µ) =
1√
2π

∑
k∈Z

exp

(
−(µ− k)2

2

)
(k − µ) ,

φ′′(µ) =
1√
2π

∑
k∈Z

exp

(
−(µ− k)2

2

)(
(k − µ)2 − 1

)
,
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we quote:

φ′′
(x
h

)
=

1√
2π

∑
k∈Z

exp

(
−1

2

(
x− kh
h

)2
)

(kh− x)2

h2
− φ

(x
h

)
,

and applying this to the second summand, it follows

s2(x) =
h2

2
f ′′(ζh)

(
φ′′
(x
h

)
+ φ

(x
h

))
.

Thus we obtain:

εh(x) = S1(x) + S2(x) = s1(x) + s2(x) + S2(x)

= hf ′(x)φ′
(x
h

)
+
h2

2
f ′′(ζh)

(
φ′′
(x
h

)
+ φ

(x
h

))
+ f(x)

(
φ
(x
h

)
− 1
)
.

Applying the triangle inequality, it follows

|εh(x)| ≤ h2

2
||f ′′||∞

(∣∣∣φ(x
h

)∣∣∣+
∣∣∣φ′′ (x

h

)∣∣∣)+ h |f ′(x)|
∣∣∣φ′ (x

h

)∣∣∣+ |f(x)|
∣∣∣φ(x

h

)
− 1
∣∣∣ .

The estimate of Lemma 2.2 shows that we are using an approximation essentially

of second order, since in practice, only the term

h2

2
||f ′′||∞

∣∣∣φ(x
h

)∣∣∣
has to be taken into account, all other factors are neglectably small. Therefore it is

clear that, the expression approximate approximation seems to be reasonable.

The method carries over immediately to the n-dimensional case, where a given

function f : Rn −→ R can be approximated by:

fh(x) :=
1√

(2π)n

∑
k∈Zn

exp

(
−1

2

∣∣∣∣x− khh

∣∣∣∣2
)
f(kh). (4)
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All the above statements hold true in this case, too.

3 Application to the Poisson Equation

To use the approximation method of Chapter 2 for the numerical solution of the

Poisson equation

−∆v = f in Rn (n = 2, 3), (5)

we proceed as follows: It is well-known that a solution of (5) is given by the volume

potential

V f(x) :=

∫
Rn

e(x− y)f(y)dy (n = 2, 3). (6)

Here,

e(x) :=


1

2π
ln

1

|x|
, n = 2,

1

4π

1

|x|
, n = 3

(7)

denotes the fundamental solution of the Laplacian −∆ in Rn(n = 2, 3). To

approximate V f, we replace f by fh defined in (4). This leads to an approximate

solution vh of (5) in the form:

vh(x) := V fh =

∫
Rn

e(x− y)fh(y)dy

=
∑
m∈Zn

∫
Rn

e(x− y)
1√

(2π)n
exp

(
−1

2

∣∣∣y
h
−m

∣∣∣2) f(hm)

=:
∑
m∈Zn

Sm,h(x)f(hm),
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with

Sm,h(x) =



1

4π2

∫
R2

ln
1

|x− y|
exp

(
−1

2

∣∣∣y
h
−m

∣∣∣2) dy, n = 2,

1

4π
√

(2π)3

∫
R3

1

|x− y|
exp

(
−1

2

∣∣∣y
h
−m

∣∣∣2) dy, n = 3.

The weights Sm,h(x) can be determined analytically. First we consider the case

n = 2:

Theorem 3.1 For n = 2 we have:

Sm,h(x) = −h
2

4π

{
ln
(
2h2
)
− C + exint

(
1

2

∣∣∣∣1hx−m
∣∣∣∣2
)}

.

Here C = 0.577215 . . . is Euler’s constant, and the exponential integral exint is

defined by:

exint(x) :=

x∫
0

1− exp(−t)
t

dt.

Proof: We set ζ := x/h − m and z := y/h − m, i.e. x − y = h (ζ − z). With

dy = h2dz it follows

Sm,h(x) =
1

4π2

∫
R2

ln
1

|h (ζ − z) |
exp

(
−|z|

2

2

)
h2dz

= − h2

4π2

∫
R2

ln(h) exp

(
−|z|

2

2

)
dz − h2

4π2

∫
R2

ln |ζ − z| exp

(
−|z|

2

2

)
dz

=: −S1(x)− S2(x).

For the first summand S1(x) we use two-dimensional polar coordinates (r, ϕ) and

Journal of Computational Mathematica Page 171 of 199



2456-8686, 6(1), 2022: 159-199
https://doi.org/10.26524/cm128

obtain:

S1(x) =
h2

4π2

∫
R2

ln(h) exp

(
−|z|

2

2

)
dz

=
h2

4π2
ln(h)

2π∫
0

∞∫
0

exp

(
−r

2

2

)
rdrdϕ

=
h2

2π
ln(h)

∞∫
0

exp

(
−r

2

2

)
rdr,

and substituting s =
1

2
r2, hence ds = rdr, we find:

S1(x) =
h2

2π
ln(h)

∞∫
0

exp (−s) ds =
h2

2π
ln(h).

For the second summand S2(x), it follows

S2(x) =
2πh2

4π2

∫
R2

− 1

2π
ln |ζ − z|

[
− exp

(
−|z|

2

2

)]
dz

=
h2

2π

∫
R2

− 1

2π
ln |ζ − z|

[
− exp

(
−|z|

2

2

)]
dz =:

h2

2π
S3(ζ),

with the function S3(ζ) given by:

S3(ζ) =

∫
R2

− 1

2π
ln |ζ − z|

[
− exp

(
−|z|

2

2

)]
dz.

The function S3 is a volume potential for the Laplacian −∆ in R2, and we obtain

−∆S3(ζ) = − exp

(
−|ζ|

2

2

)
for all ζ ∈ R2.

Since the right hand side of this Poisson equation depends only on |ζ|, we expect

the same for the solution S3. To prove this, we consider S3(ζ) at the point ζ =
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(|ζ| cosψ, |ζ| sinψ), obtaining

S3(ζ) =

∫
R2

− 1

2π
ln |ζ − z|

[
− exp

(
−|z|

2

2

)]
dz

=

∫
R2

− 1

2π
ln
√
|ζ|2 + |z|2 − 2|ζ||z| cos(](ζ, z))

[
− exp

(
−|z|

2

2

)]
dz

=
1

2π

∞∫
0

2π∫
0

ln
√
|ζ|2 + r2 − 2|ζ|r cos(ψ − ϕ) exp

(
−r

2

2

)
rdϕdr,

where ](ζ, z) denotes the angle between ζ, z ∈ R2. Now substituting θ := ϕ− ψ, we

find (note cos θ = cos(−θ))

S3(ζ) =
1

2π

∞∫
0

2π−ψ∫
−ψ

ln
√
|ζ|2 + r2 − 2|ζ|r cos(θ) exp

(
−r

2

2

)
rdθdr,

hence, due to the 2π-periodicity of the cosine function,

S3(ζ) =
1

2π

∞∫
0

2π∫
0

ln
√
|ζ|2 + r2 − 2|ζ|r cos(θ) exp

(
−r

2

2

)
rdθdr.

This shows that S3 depends only on ρ := |ζ| and not on the angle ψ. Since the

two-dimensional Laplace operator in polar coordinates is defined by:

∆S3(ρ, ψ) =
∂2S3

∂ρ2
+

1

ρ

∂S3

∂ρ
+

1

ρ2
∂2S3

∂ψ2
,

from ∆S3(ζ) = exp

(
−|ζ|2

2

)
we obtain (ζ = ρ cosψ, ρ sinψ)

S ′′3 (ρ) +
1

ρ
S ′3(ρ) =

1

ρ
(ρS ′3(ρ))

′
= exp

(
−1

2
ρ2
)
.
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Setting ρ = t, integration yields

r∫
0

(tS ′3(t))
′
dt =

r∫
0

t exp

(
−t2

2

)
dt,

hence,

rS ′3(r) =

r∫
0

t exp

(
−t2

2

)
dt,

and, substituting s =
t2

2
, ds = tdt, for the right hand side we obtain:

r∫
0

t exp

(
−t2

2

)
dt =

r2

2∫
0

exp (−s) ds = 1− exp

(
−r2

2

)
.

Thus it follows

rS ′3(r) = 1− exp

(
−r2

2

)
,

and another integration yields

r∫
0

S ′3(t)dt =

r∫
0

1

t

(
1− exp

(
−t2

2

))
dt,

hence,

S3(r)− S3(0) =

r∫
0

t

2t2/2

(
1− exp

(
−t2

2

))
dt,

which implies, setting s =
1

2
t2, ds = tdt,

S3(r) = S3(0) +
1

2

r2

2∫
0

(
1− exp (−s)

s

)
ds = S3(0) +

1

2
exint

(
r2

2

)
.

To calculate
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S3(0) =
1

2π

∫
R2

ln |z| exp

(
−|z|

2

2

)
dz,

we use polar coordinates and find:

S3(0) =
1

2π

∞∫
0

2π∫
0

ln(r) exp

(
−r

2

2

)
rdϕdr

=
1

2

 ∞∫
0

ln
r2

2
exp

(
−r

2

2

)
rdr + ln 2

∞∫
0

exp

(
−r

2

2

)
rdr



=
1

2

 ∞∫
0

ln s exp (−s) ds+ ln 2

∞∫
0

exp (−s) ds

 .
Using SAGE (System for Algebra and Geometry Experimentation), we find:

∞∫
0

ln s exp (−s) ds = −0.577215... = −C,

and thus,

S3(0) =
1

2
(−C + ln 2) .

It follows

S3(ζ) = S3(0) +
1

2
exint

(
|ζ|2

2

)
=

1

2

[
−C + ln 2 + exint

(
|ζ|2

2

)]
.
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Thus, we obtain:

Sm,h(x) = −S1(x)− S2(x) = −S1(x)− h2

2π
S3(ζ)

= −h
2

2π
ln(h)− h2

2π

(
1

2

[
−C + ln 2 + exint

(
1

2
|ζ|2
)])

= −h
2

4π
ln(h2)− h2

4π
ln 2− h2

4π

[
−C + exint

(
1

2
|ζ|2
)]

= −h
2

4π

[
ln (2h2)− C + exint

(
1

2
|ζ|2
)]

.

Finally, using ζ =
1

h
x−m, the theorem is proved :

Sm,h(x) = −h
2

4π

{
ln
(
2h2
)
− C + exint

(
1

2

∣∣∣∣1hx−m
∣∣∣∣2
)}

.

Theorem 3.2 For n = 3, with ζ :=
1

h
x−m 6= 0 we have

Sm,h(x) =
h2√
(2π)3

1

|ζ|

|ζ|∫
0

exp

(
−t2

2

)
dt,

and for x = mh it holds

Sm,h(mh) =
h2√
(2π)3

.

Proof: Let ζ := x/h −m and z := y/h −m. With dz =
1

h3
dy, hence dy = h3dz,

we obtain:

Sm,h(x) =
1

4π
√

(2π)3

∫
R3

1

|x− y|
exp

(
−1

2

∣∣∣y
h
−m

∣∣∣2) dy =:
1

4π
√

(2π)3
S(x)
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with

S(x) =
1

h

∫
R3

1

|ζ − z|
exp

(
−1

2
|z|2
)
h3dz = S(ζ)

= h2
∫
R3

1

|ζ − z|
exp

(
−1

2
|z|2
)
dz =: S(ζ).

Obviously, ζ 7−→ S(ζ) = S(|ζ|) depends only on |ζ|, hence we assume ζ =

(0, 0, |ζ|) 6= 0 and obtain:

S(ζ) = h2
2π∫
0

π∫
0

∞∫
0

exp

(
−1

2
r2
)
r2 sin θ

1√
|ζ|2 + r2 − 2|ζ|r cos θ

drdθdϕ

= 2πh2
∞∫
0

exp

(
−1

2
r2
)
r

π∫
0

r sin θ√
|ζ|2 + r2 − 2|ζ|r cos θ

dθ dr

=: 2πh2
∞∫
0

r exp

(
−1

2
r2
)
I(r) dr,

with

I(r) =

π∫
0

r sin θ√
|ζ|2 + r2 − 2|ζ|r cos θ

dθ

=

π∫
0

1

|ζ|
r|ζ| sin θ√

|ζ|2 + r2 − 2|ζ|r cos θ
dθ

=
1

|ζ|

[√
|ζ|2 + r2 − 2|ζ|r cos θ

]θ=π
θ=0

=
1

|ζ|
(|ζ|+ r − ||ζ| − r|) .
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It follows

S(ζ) = 2πh2
∞∫
0

r exp

(
−1

2
r2
)
I(r) dr,

S(ζ) = 2πh2
1

|ζ|

|ζ|∫
0

r exp

(
−1

2
r2
)

(|ζ|+ r − (|ζ| − r)) dr

+ 2πh2
1

|ζ|

∞∫
|ζ|

r exp

(
−1

2
r2
)

(|ζ|+ r − (r − |ζ|)) dr

= 4πh2
1

|ζ|

|ζ|∫
0

r2 exp

(
−1

2
r2
)
dr + 4πh2

∞∫
|ζ|

r exp

(
−1

2
r2
)
dr

=: 4πh2 (I1(ζ) + I2(ζ)) .

For

I1(ζ) =
1

|ζ|

|ζ|∫
0

r2 exp

(
−1

2
r2
)
dr,

applying integration by part with u′ = r exp

(
−1

2
r2
)

and v = r, we obtain

I1(ζ) =
1

|ζ|

[−r exp

(
−1

2
r2
)]|ζ|

0

+

|ζ|∫
0

exp

(
−1

2
r2
)
dr



= − exp

(
−1

2
|ζ|2
)

+
1

|ζ|

|ζ|∫
0

exp

(
−1

2
r2
)
dr,
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and

I2(ζ) =

∞∫
|ζ|

r exp

(
−1

2
r2
)
dr =

[
− exp

(
−1

2
r2
)]∞
|ζ|

= exp

(
−1

2
|ζ|2
)
.

Therefore it follows

S(ζ) = 4πh2 (I1(ζ) + I2(ζ)) = 4πh2
1

|ζ|

|ζ|∫
0

exp

(
−r

2

2

)
dr,

hence,

Sm,h(x) =
1

4π
√

(2π)3
S(ζ) =

h2√
(2π)3

1

|ζ|

|ζ|∫
0

exp

(
−t

2

2

)
dt,

if |ζ| 6= 0, finally, using

1

|ζ|

|ζ|∫
0

exp

(
−t

2

2

)
dt −→ 1 as |ζ| −→ 0,

the theorem is proved.

4 Numerical Simulation for the Poisson Equation

In the following, we present some numerical simulations using the above formulas

for the 2-d and 3-d Poisson equation. First, let us consider the case n = 2.

In this case, for 2 ≤ β ∈ N, we consider the test function:

v(x1, x2) =


16β

(
1

4
− x21

)β (
1

4
− x22

)β
in Q

0 in R2\Q,

where Q denotes the open 2-d unit square
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Q :=

{
(x1, x2) ∈ R2| |x1| <

1

2
, |x2| <

1

2

}
.

The above function v : R2 −→ R is a solution of the 2-d Poisson equation −∆v = f

in R2 with f(x) := f(x1, x2) := −∆v(x1, x2). Of course it holds f = 0 in R2\Q and,

defining hi :=
1

4
− x2i for i = 1, 2, an easy calculation shows

f(x) = 2β16β (h1h2)
β−2 .

[
h1h2 (h1 + h2)− 2 (β − 1)

(
(x2h1)

2 + (x1h2)
2)] in Q.

The first table below shows the approximation error εh := max |v(x) − vh(x)|,
the maximum taken in 225 points in the unit square Q, for different step sizes and

different values of β. Here the exponential integral function exint(x) in Theorem 3

and vh have been evaluated with help of SageMath (www.sagemath.org).

h \ β 2 3 4 5

0.1 5.0572493e-01 1.4148691e-01 2.4969445e-01 0.2976052e-01

0.05 2.1495065e-01 4.2375107e-02 7.4950321e-02 9.2231701e-02

0.025 9.6771751e-02 1.1084570e-02 1.9672619e-02 2.4488300e-02

0.0125 4.5629427e-02 2.8027145e-03 4.9793479e-03 6.2175874e-03

0.00625 2.2120503e-02 7.0266619e-04 1.2487062e-03 1.5604673e-03

0.003125 1.0886379e-02 1.7579099e-04 3.12419092e-04 3.9049785e-04

0.0015625 5.3997014e-03 4.3955530e-05 7.8119942e-05 9.7648301e-05

Table 4.1: Maximal error εh

From this table, an order αh := log2

ε2h
εh

of approximation can be easily calculated:
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Figure 3: Test function v (β = 5)

Figure 4: f := −∆v (β = 5)
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h \ β 2 3 4 5

0.1 - - - -

0.05 1.2343474 1.7393797 1.7361572 1.6900654

0.025 1.1513476 1.9346642 1.9297456 1.9131700

0.0125 1.0846214 1.9836561 1.9821602 1.9776658

0.00625 1.04458036 1.9959134 1.9955227 1.9943766

0.003125 1.0228600 1.9989783 1.9988795 1.9985916

0.0015625 1.0115726 1.9997445 1.9997198 1.9996477

Table 4.2: Order of approximation αh

Since in the case β = 2 the function f /∈ C0(R2) jumps on the boundary ∂Q of the

unit squareQ, here, only a first order approximation is shown. For 3 ≤ β ∈ N, we have

f ∈ Cβ−3
0 (Rn) and obtain a second order approximation. This behavior corresponds

to the statement of Lemma 2 if 5 ≤ β, since in this case we have f ∈ C2
b (Rn). Due

to the regularizing effect of the convolution type integral, however, we obtain this

behavior even for 3 ≤ β.

Secondly, let us consider the case n = 3. In this case, for 2 ≤ β ∈ N, we consider

the test function:

v(x1, x2, x3) =


64β

(
1

4
− x21

)β (
1

4
− x22

)β (
1

4
− x23

)β
in P

0 in R3\P ,

where P denotes the open 3-d unit cube

P :=

{
(x1, x2, x3) ∈ R3| |x1| <

1

2
, |x2| <

1

2
, |x3| <

1

2

}
.

The above function v : R3 −→ R is a solution of the 3-d Poisson equation −∆v = f
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in R3 with f(x) := f(x1, x2, x3) := −∆v(x1, x2, x3). Of course it holds f = 0 in R3\P
and, defining hi :=

1

4
− x2i for i = 1, 2, 3, an easy calculation shows

f(x) = 2β64β (h1h2h3)
β−2 [h1h2h3 {h1 + h2} − 2 (β − 1)

{
x23 (h1h2)

2 + x22 (h1h3)
2 + x21 (h2h3)

2}]
in P . The Tables 4.3 and 4.4 below show similar results as in the case n = 2. Here

the extensive summation in a 3-d unit cube on a simple laptop leads to a restriction

of the smallness of the step size.

h \ β 2 3 4 5

0.1 1.1975408e-01 2.7438660e-01 4.1138694e-01 4.8621201e-01

0.05 1.2114626e-01 8.1703728e-02 1.2556494e-01 1.5404790e-01

0.025 7.8346660e-02 2.1384350e-02 3.3175341e-02 4.1261496e-02

0.0125 4.3784184e-02 5.4084498e-03 8.4122752e-03 1.0501918e-02

Table 4.3 : Maximum error εh

From this table, an order αh := log2

ε2h
εh

of approximation can be easily calculated:

h \ β 2 3 4 5

0.1 - - - -

0.05 1.2985123 1.7477362 1.7120623 1.6582064

0.025 1.2066054 1.9338465 1.9202504 1.90051104

0.0125 1.1201218 1.9832682 1.9795433 1.9741432

Table 4.4 : Order of approximation αh

This shows that also in 3-d case the approximation yields the expected order 2.
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5 Application to the Stokes System

We will use the approximation method of Chapter 2 to construct a numerical

solution of the Stokes equations in R2. To do so, we define the formal Stokes operator

S by

 u

p

 7→ Sup :=

 −∆u+∇p

div u

 :=



−
2∑
i=1

∂2u1
∂x2i

+
∂p

∂x1

−
2∑
i=1

∂2u2
∂x2i

+
∂p

∂x2

2∑
i=1

∂ui
∂xi


. (8)

This leads us to the Stokes Cauchy problem in R2 : For a given vector function

f := (f1, f2)
T construct a vector function u := (u1, u2)

T and some scalar function p

with

{
−∆u+∇p = f

div u = 0
in R2, (9)

where u := (u1, u2)
T is the unknown velocity field and p an unknown pressure

function of a viscous incompressible fluid flow with some given external force density

f := (f1, f2)
T .

It is well known that under suitable assumptions on f, a solution of (9) is given by

the hydrodynamical volume potential

 u

p

 (x) = V F (x) :=

∫
R2

E(x− y)F (y)dy, with F =


F1

F2

F3

 :=


f1

f2

0

 .

(10)
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Here, E(x) = Eij(x) denotes the 3 x 3 fundamental matrix of the Stokes system,

defined by:

Eij(x) =
1

4π

(
δij ln

1

|x|
+
xixj
|x|2

)
, i, j = 1, 2, (11)

E3j(x) = Ej3(x) =
xj

2π|x|2
, j = 1, 2, E33(x) = δ(x), (12)

where δij is the Kronecker symbol and δ the Dirac distribution in R2. In (10), EF
means matrix-vector multiplication.

To approximate the volume potential V F, we replace each component Fj (j =

1, 2, 3) of the given function F by the approximation (4), i.e. by:

F h
j (y) :=

1

2π

∑
m∈Z2

exp

(
−1

2

∣∣∣∣y −mhh

∣∣∣∣2
)
Fj(hm). (13)

This yields an approximate solution
(
uh, ph

)T
=
(
uh1 , u

h
2 , p

h
)T

of (9) in the form:

(
uh, ph

)T
(x) = V Fh(x) :=

∫
R2

E(x− y)Fh(y)dy

=
∑
m∈Z2

∫
R2

E(x− y)
1

2π
exp

(
−1

2

∣∣∣∣y − hmh

∣∣∣∣2
)
F (hm)dy

=:
∑
m∈Z2

Am,h(x)F (hm)

with the 3 x 3-matrix Am,h(x) = Am,hij (x), defined by

Am,hij (x) =

∫
R2

Eij(x− y)
1

2π
exp

(
−1

2

∣∣∣∣y −mhh

∣∣∣∣2
)
dy.

In the next theorem, we compute the 2 x 2 left upper part of that matrix, which
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concerns the velocity field, and which is defined by

Am,hij (x) =
1

8π2

∫
R2

(
δij ln

1

|x− y|
+

(xi − yi)(xj − yj)
|x− y|2

)
× exp

(
−1

2

∣∣∣∣y −mhh

∣∣∣∣2
)
dy, i, j = 1, 2.

Theorem 5.1 For i, j = 1, 2 and x 6= hm it holds

Am,hij (x) =
1

8π
h2δij

− ln(2h2) + C − exint

(
1

2

∣∣∣x
h
−m

∣∣∣2)+

1− exp

(
−1

2

∣∣∣x
h
−m

∣∣∣2)
1

2

∣∣∣x
h
−m

∣∣∣2


+
1

8π
h2


(xi
h
−mi

)(xj
h
−mj

)
1

2

∣∣∣x
h
−m

∣∣∣2 −

(xi
h
−mi

)(xj
h
−mj

)
1

4

∣∣∣x
h
−m

∣∣∣4
[
1− exp

(
−1

2

∣∣∣x
h
−m

∣∣∣2)]
 ,

and for x = hm, it holds

Am,hij (hm) = δij
1

8π
h2 (C − ln (2h2) + 1) .

Here, C = 0.577215 . . . is Euler’s constant, and the exponential integral exint is

defined as in Theorem 3.

Proof: Let us consider the function

H(x) =
1

2
|x|2

(
ln |x| − 1

2

)
, x ∈ R2.

An easy calculation shows

∂2H(x)

∂xi∂xj
= −δij ln

1

|x|
+
xixj
|x|2

, 0 6= x ∈ R2.
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Thus, setting α := −1
2

∣∣∣∣y −mhh

∣∣∣∣2 for abbreviation, we obtain:

Am,hij (x) =
1

8π2

[∫
R2

(
−δij ln

1

|x− y|
+

(xi − yi)(xj − yj)
|x− y|2

)
exp (α)

+2δij ln
1

|x− y|
exp (α) dy

]

=
1

8π2

[∫
R2

∂2H(x− y)

∂xi∂xj
exp (α) dy + 2δij

∫
R2

ln
1

|x− y|
exp (α) dy

]

=
1

8π2

∫
R2

∂2H(x− y)

∂xi∂xj
exp (α) dy + δij

∫
R2

1

4π2
ln

1

|x− y|
exp (α) dy

=
1

8π2

∫
R2

∂2H(x− y)

∂xi∂xj
exp

(
−1

2

∣∣∣∣y −mhh

∣∣∣∣2
)
dy + δijSm,h(x) (Theorem 3)

=:
1

16π2

∂2

∂xi∂xj
B(x) + δijSm,h(x)

with

B(x) :=

∫
R2

|x− y|2
(

ln |x− y| − 1

2

)
exp

(
−1

2

∣∣∣∣y −mhh

∣∣∣∣2
)
dy.

In the following, we compute the integral B(x). To do so, let ζ :=
x

h
− m,
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z :=
y

h
−m, x− y = h (ζ − z) and dy = h2dz. Then we find:

B(x) =

∫
R2

|h (ζ − z) |2
(

ln |h (ζ − z) | − 1

2

)
exp

(
−1

2
|z|2
)
h2dz

= h4
∫
R2

[
|ζ − z|2 ln |h (ζ − z) | exp

(
−1

2
|z|2
)
− 1

2
| (ζ − z) |2 exp

(
−1

2
|z|2
)]

dz

= h4
∫
R2

|ζ − z|2 ln |ζ − z| exp

(
−1

2
|z|2
)
dz +

(
lnh− 1

2

)
h4
∫
R2

|ζ − z|2 exp

(
−1

2
|z|2
)
dz

=: h4F (x) +

(
lnh− 1

2

)
h4G(x),

with

F (x) :=

∫
R2

|ζ−z|2 ln |ζ−z| exp

(
−1

2
|z|2
)
dz, G(x) :=

∫
R2

|ζ−z|2 exp

(
−1

2
|z|2
)
dz.

Using two-dimensional polar coordinates (r, ϕ) we obtain:

G(x) =

∞∫
0

2π∫
0

(
|ζ|2 + r2 − 2|ζ|r cosϕ

)
exp

(
−1

2
r2
)
rdϕdr

=

∞∫
0

(
r exp

(
−1

2
r2
)[
|ζ|2ϕ+ r2ϕ− 2|ζ|r sinϕ

]2π
0

)
dr

=

∞∫
0

r exp

(
−1

2
r2
)(

2π|ζ|2 + 2πr2
)
dr

= 2π|ζ|2 + 4π = 2π (|ζ|2 + 2)
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and

F (x) =

∞∫
0

2π∫
0

(
|ζ|2 + r2 − 2|ζ|r cosϕ

)
ln
(
|ζ|2 + r2 − 2|ζ|r cosϕ

)1/2
exp

(
−1

2
r2
)
rdϕdr

=
1

2

∞∫
0

(|ζ|2 + r2
) 2π∫

0

ln
(
|ζ|2 + r2 − 2|ζ|r cosϕ

)
dϕ

− 2|ζ|r
2π∫
0

cosϕ ln
(
|ζ|2 + r2 − 2|ζ|r cosϕ

)
dϕ

 r exp
(
−1

2
r2
)
dr

=:
1

2

∞∫
0

[(
|ζ|2 + r2

)
I1(ζ, r)− 2|ζ|rI2(ζ, r)

]
r exp

(
−1

2
r2
)
dr,

with

I1(ζ, r) =

2π∫
0

ln
(
|ζ|2 + r2 − 2|ζ|r cosϕ

)
dϕ, I2(ζ, r) =

2π∫
0

cosϕ ln
(
|ζ|2 + r2 − 2|ζ|r cosϕ

)
dϕ.

Using

2π∫
0

ln (a± b cosϕ) dϕ = 2π ln
a+
√
a2 − b2
2

if a ≥ b, we find

I1(ζ, r) = 2π ln
|ζ|2 + r2 + ||ζ|2 − r2|

2
=

{
4π ln |ζ|, r < |ζ|

4π ln r, |ζ| ≤ r.
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Applying ([5], p.589, 4.397 Nr.6), we finally obtain

I2(ζ, r) =


−2πr

|ζ|
, r < |ζ|

−2π|ζ|
r

, |ζ| ≤ r.

Thus it follows:

F (x) =
1

2

|ζ|∫
0

[(
|ζ|2 + r2

)
4π ln |ζ|+ 2|ζ|r2πr

|ζ|

]
r exp

(
−1

2
r2
)
dr

+
1

2

∞∫
|ζ|

[(
|ζ|2 + r2

)
4π ln r + 2|ζ|r2π|ζ|

r

]
r exp

(
−1

2
r2
)
dr

= 2π

|ζ|2 ln |ζ|
|ζ|∫
0

r exp

(
−1

2
r2
)
dr + (ln |ζ|+ 1)

|ζ|∫
0

r3 exp

(
−1

2
r2
)
dr

+ |ζ|2
∞∫
|ζ|

(ln r + 1) r exp

(
−1

2
r2
)
dr +

∞∫
|ζ|

r3 ln r exp

(
−1

2
r2
)
dr



= 2π

[
|ζ|2 ln |ζ|

(
1− exp

(
−1

2
|ζ|2
))

+ (ln |ζ|+ 1)

(
2− (|ζ|2 + 2) exp

(
−1

2
|ζ|2
))

+ |ζ|2
{
−1

2
Ei

(
−1

2
|ζ|2
)

+ exp

(
−1

2
|ζ|2
)

(ln |ζ|+ 1)

}

+

{
−Ei

(
−1

2
|ζ|2
)

+ exp

(
−1

2
|ζ|2
)

((|ζ|2 + 2) ln |ζ|+ 1)

}]

Journal of Computational Mathematica Page 190 of 199



2456-8686, 6(1), 2022: 159-199
https://doi.org/10.26524/cm128

with

Ei(z) := −
∞∫
−z

exp(−t)
t

dt = exint(z)− C − ln z.

Here the first integral is trivial, and the other three integrals are evaluated using

WolframAlpha 6. Collecting all terms yields

F (x) = 2π

[
2− exp

(
−1

2
|ζ|2
)

+

(
1

2
|ζ|2 + 1

)
.

{
ln 2− C + exint

(
1

2
|ζ|2
)}]

,

and it follows

B(x) = h4F (x) +

(
lnh− 1

2

)
h4G(x)

= 2πh4
{

2− exp

(
−1

2
|ζ|2
)

+

(
1

2
|ζ|2 + 1

)[
ln (2h2)− C − 1 + exint

(
1

2
|ζ|2
)]}

.

It remains to calculate the second order derivatives of the function B. Assuming

ζ 6= 0, we find:

∂

∂xi
B(x) = 2πh3

ζi(ln
(
2h2
)
− C + exint

(
1

2
|ζ|2
))

+ ζi

1− exp

(
−1

2
|ζ|2
)

1

2
|ζ|2

 ,
and thus,

∂2

∂xi∂xj
B(x) = 2πh3

[
δij

(
ln (2h2)− C + exint

(
1

2
|ζ|2
))

+ δij

1− exp

(
−1

2
|ζ|2
)

1

2
|ζ|2

+
ζiζj
1

2
|ζ|2
− ζiζj

1

4
|ζ|4

(
1− exp

(
−1

2
|ζ|2
)) .

6https://www.wolframalpha.com/
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Finally, applying Theorem 3 and using ζ = x/h−m, for ζ 6= 0 we obtain:

Am,hij (x) =
1

16π2

∂2

∂xi∂xj
B(x) + δijSm,h(x)

=
1

8π
h2δij

− ln(2h2) + C − exint

(
−1

2

∣∣∣x
h
−m

∣∣∣2)+

1− exp

(
−1

2

∣∣∣x
h
−m

∣∣∣2)
1

2

∣∣∣x
h
−m

∣∣∣2


+
1

8π
h2


(xi
h
−mi

)(xj
h
−mj

)
1

2

∣∣∣x
h
−m

∣∣∣2 −

(xi
h
−mi

)(xj
h
−mj

)
1

4

∣∣∣x
h
−m

∣∣∣4
[
1− exp

(
−1

2

∣∣∣x
h
−m

∣∣∣2)]
 ,

and for ζ = 0, we have:

Am,hij (x) = Am,hij (hm) =
1

8π
h2δij (C − ln (2h2) + 1) .

Analogously, in the next theorem, we present the missing components of the 3 x

3-matrix Am,h(x) for the pressure function. The proof can be carried out analogously.

Theorem 5.2 For i=3, j=1,2, and x 6= hm, it holds

Am,h3j (x) = 2πh
(xj
h
−m

) 1− exp

(
−1

2

∣∣∣x
h
−m

∣∣∣2)∣∣∣x
h
−m

∣∣∣2 ,

and for x = hm

Am,h3j (hm) = 0.

Proof: We have

Am,h3j (x) =
1

4π2

∫
R2

xi − yi
|x− y|2

exp

(
−1

2

∣∣∣∣y −mhh

∣∣∣∣2
)
dy.
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Since,
∂

∂xj
ln |x| = xj

|x|2
if x 6= 0 it follows Am,h3j (x) = − ∂

∂xj
Sm,h(x), and since,

Sm,h(x) = −h
2

4π

{
ln
(
2h2
)
− C + exint

(
1

2

∣∣∣∣1hx−m
∣∣∣∣2
)}

we obtain for x 6= hm

Am,h3j (x) = − ∂

∂xj
Sm,h(x) = πh

(xj
h
−m

) 1− exp

(
−1

2

∣∣∣x
h
−m

∣∣∣2)
1

2

∣∣∣x
h
−m

∣∣∣2 ,

and for x = hm

Am,h3j (hm) = 0.

This proves the theorem.

6 Numerical Simulation for the Stokes System

In the following we present some numerical simulations using the formula of

Chapter 5 for the 2-d Stokes system. In this case, for 3 ≤ β ∈ N we consider

the test functions u = (u1, u2)
T and p defined by:

u1(x1, x2) := 4x2

(
16

3

)2β−1(
1

4
− x21

)β (
1

4
− x22

)β−1
in Q,

u2(x1, x2) := −4x1

(
16

3

)2β−1(
1

4
− x21

)β−1(
1

4
− x22

)β
in Q,

p(x1, x2)
T := 16β−1

(
1

4
− x21

)β−1(
1

4
− x22

)β−1
in Q,

Here, Q denotes the open 2-d unit square as in Chapter 4, and we set u1 := 0, u2 :=

0, p := 0 in R2\Q. The Figures 5, 6 bellow shows an illustration of each component

of the function u.

An easy calculation shows that u is divergence-free in R2. Hence the functions

u1, u2, p represent a solution of the 2-d Stokes system −∆u+∇p = f in R2, div u = 0
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Figure 5: u1 for β = 5

Figure 6: u2 for β = 5
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in R2, with f := −∆u + ∇p in R2. Setting hi :=
1

4
− x2i for i = 1, 2 and defining

j ∈ {1, 2} by j := 1 if i = 2 and j := 2 if i = 1, a lengthy calculation yields for

i = 1, 2 :

fi(x) = fi(x1, x2) = (−1)i8

(
16

3

)2β−1

xjh
β−2
i hβ−3j

[
(β − 1)h2i

{
2 (β − 2)x2j − 3hj

}

+ βh2j {2 (β − 1)x2i − hi}
]
− 16β−12 (β − 1)xih

β−2
i 2hβ−1j .

The Figures 7, 8 bellow shows an illustration of each component of the function f .

The table 6.1 below shows the approximation error εh := max |ui(x)− uhi (x)| (the

results are identical for i = 1, 2), the maximum taken in 225 points in the unit

square Q, for different step sizes and different values of β. The functions uhi have

been evaluated with help of SageMath (www.sagemath.org).

h \ β 3 4 5 6

0.1 1.0011340e-00 1.0850504e-00 2.3241189e-00 4.2213356e-00

0.05 2.7613415e-01 3.4703009e-01 7.6838811e-01 1.4439411e-00

0.025 7.6513041e-02 9.2533098e-02 2.0751514e-01 3.9527866e-01

0.0125 1.997655e-02 2.3512980e-02 5.2915240e-02 1.0117698e-01

0.00625 4.6772811e-02 5.9022680e-03 1.3294823e-02 2.5444871e-02

0.003125 1.1713465e-02 1.4770762e-03 3.3278477e-03 6.3706901e-03

0.0015625 2.9296106e-03 3.6936276e-04 8.3222152e-04 1.5932702e-03

Table 6.1: Maximum error εh

From this table, an order αh := log2

ε2h
εh

of approximation can be easily calculated:
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Figure 7: f1 for β = 5

Figure 8: f2 for β = 5
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h \ β 3 4 5 6

0.05 1.8581938 1.6446293 1.5967767 1.5476876

0.025 1.8515917 1.9070193 1.8886185 1.8690699

0.0125 1.9373982 1.9765120 1.9714614 1.9659889

0.00625 1.9944283 1.9941160 1.9928187 1.9914343

0.003125 1.9975098 1.9985251 1.9982032 1.9978533

0.0015625 1.9993790 1.9996339 1.9995499 1.9994587

Table 6.2: Order of approximation αh

7 Conclusion

The present paper deals with the numerical solution of two important problems in

mathematical physics, i.e. the Poisson equation in 2 and 3 space dimensions and the

Stokes system in 2 space dimensions. Using methods of potential theory based on the

weakly singular fundamental solutions of the Poisson and the Stokes equations, the

solution of these Cauchy problems can be represented by two- and three-dimensional

convolution type integrals (volume potentials).

These volume potentials are calculated numerically, and in all cases, the

simulations impressively confirm an approximation of essentially second order, which

we prove for the method of approximate approximations used in this paper.

This method is based on an approximate partition of the unity with Gaussian bell

curves as generating functions to approximate the given right hand sides of the partial

differential equations considered here. The corresponding volume potentials with the

approximated right hand sides can be calculated exactly, up to a one-dimensional

integral.

The result is a non-convergent approximate approximation delivering an error

estimate between exact and numerical solution in the form O(h2) + δ with a very

small positive δ below machine precision. In all simulations this δ is not seen since

the standard deviation σ = 1 of the Gaussian bell is large enough.
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