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Abstract

We unify and extend the semigroup and PDE approaches to stochastic maximal regularity

of time-dependent semilinear parabolic problems with noise given by a cylindrical Brownian

motion. We treat random coefficients that are only progressively measurable in the time

variable. For 2m-th order systems with VMO regularity in space, we obtain Lp(Lq) estimates

for all p > 2 and q ≥ 2, leading to optimal space-time regularity results. For second order

systems with continuous coefficients in space, we also include a first order linear term, under a

stochastic parabolicity condition, and obtain Lp(Lp) estimates together with optimal space-time

regularity. For linear second order equations in divergence form with random coefficients that

are merely measurable in both space and time, we obtain estimates in the tent spaces T p,2σ of

Coifman-Meyer-Stein. This is done in the deterministic case under no extra assumption, and

in the stochastic case under the assumption that the coefficients are divergence free.

Key words: Stochastic PDEs, Maximal Regularity, VMO Coefficients, Measurable Coeffi-

cients.

AMS classification: 39B52, 39B72, 39B82.

1 Introduction

On X0 (typically X0 = Lr(O;CN) where r ∈ [2,∞)), we consider the

following stochastic evolution equation:{
dU(t) + A(t)U(t)dt = F (t, U(t))dt+

(
B(t)U(t) +G(t, U(t))

)
dWH(t),

U(0) = u0,
(1)
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where H is a Hilbert space, WH a cylindrical Brownian motion, A : R+ × Ω →
L(X1, X0) (for some Banach space X1 such that X1 ↪→ X0, typically a Sobolev

space) and B : R+ × Ω → L(X1, γ(H,X 1
2
)) are progressively measurable (and

satisfy a suitable stochastic parabolic estimate), the functions F and G are suitable

nonlinearities, and the initial value u0 : Ω→ X0 is F0-measurable (see Chapter 2 for

precise definitions). We are interested in maximal Lp-regularity results for (1). This

means that we want to investigate well-posedness together with sharp Lp-regularity

estimates given the data F,G and u0.

Knowing these sharp regularity results for equations such as (1), gives a priori

estimates to nonlinear equations involving suitable nonlinearities F (t, U(t))dt and

G(t, U(t))dWH(t). Well-posedness of such non-linear equations follows easily from

these a priori estimates.

2 Preliminaries

Definition 2.1 (Measurability) Let (S,Σ, µ) be a measure space. A function

f : S → X is called strongly measurable if it can be approximated by µ-simple

functions a.e. An operator valued function f : S → L(X, Y ) is called X-strongly

measurable if for every x ∈ X, s 7→ f(s)x is strongly measurable. Let (Ω,P,A) be

a probability space with filtration (Ft)t≥0. A process φ : R+ × Ω → X is called

progressively measurable if for every fixed T ≥ 0, φ restricted to [0, T ]×Ω is strongly

B([0, T ]) × FT -measurable An operator valued process φ : R+ × Ω → L(X, Y ) will

be called X-strongly progressively measurable if for every x ∈ X, φx is progressively

measurable. Let 4 := {(s, t) : 0 ≤ s ≤ t < ∞} and 4T = 4 ∩ [0, T ]2. Let BT
denotes the Borel σ-algebra on 4T . A two-parameter process φ : 4 × Ω → X will

be called progressively measurable if for every fixed T ≥ 0, φ restricted to 4T ×Ω is

strongly BT ×FT -measurable.

Definition 2.2 (Functional calculus) For σ ∈ (0, π) let Σσ = {z ∈ C : | arg(z)| <
σ}. A closed and densely defined operator (A,D(A)) on a Banach space X is called

sectorial of type (M,σ) ∈ R+ × (0, π) if A is injective, has dense range, σ(A) ⊆ Σσ

and

‖λR(λ,A)‖ ≤M, λ ∈ C\Σσ.

A closed and densely defined operator (A,D(A)) on a Banach space X is called

sectorial of type (M,w, σ) ∈ R+ × R× (0, π) if A+ w is sectorial of type (M,σ).
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Let H∞(Σϕ) denote the space of all bounded holomorphic functions f : Σϕ → C and

let ‖f‖H∞(Σϕ) = supz∈Σϕ |f(z)|. Let H∞0 (Σϕ) ⊆ H∞(Σϕ) be the set of all f for which

there exists an ε > 0 and C > 0 such that |f(z)| ≤ C |z|ε
1+|z|2ε .

For an operator A which is sectorial of type (M,σ), σ < ν < ϕ, and f ∈ H∞0 (Σϕ)

define

f(A) =
1

2πi

∫
∂Σν

f(λ)R(λ,A)dλ,

where the orientation is such that σ(A) is on the right side of the integration path.

The operator A is said to have a bounded H∞-calculus of angle ϕ if there exists a

constant C such that for all f ∈ H∞0 (Σϕ).

‖f(A)‖ ≤ C‖f‖H∞(Σϕ).

For details on the H∞-functional calculus we refer. A list of examples has been given

in the introduction.

For an interpolation couple (X0, X1) let

Xθ = [X0, X1]θ, and Xθ,p = [X0, X1]θ,p

denote the complex and real interpolation spaces at θ ∈ (0, 1) and p ∈ [1,∞],

respectively.

Definition 2.3 (Measure Space) A Pair [[X,S, µ]] is called a measure space if

[[X,S]] is a measurable space and µ is a measure on S.

Definition 2.4 (Hilbert Space) A Hilbert space is a complex Banach Space whose

norm arises from an inner product, that is in which there is defined a complex function

(x, y) of vectors x and y with

(i) (αx+ βy, z) = α(x, z) + β(y, z).

(ii) (x, y) = (y, x)

(iii) (x, x) = ||x||2

Definition 2.5 (Banach Space) A normed linear space is a linear spaceN in which

to each vector x there corresponds to a real number, denoted by ||x||, called norm of

x, such that
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(i) ||x|| ≥ 0, and ||x|| = 0⇒ x = 0.

(ii) ||x+ y|| ≤ ||x||+ ||y||
(iii) ||αx|| = |α|||x||

Definition 2.6 (Holder inequility) Let the spaces X = {x1, x2, · · · , xn},

Y = {y1, y2, · · · , yn} ∈ `. Define ||x||p =
(∑n

1 |xi|p
) 1
p
, for p > 1, then∑

` |xiyi| ≤
(∑

ell |xi|p
) 1
p
(∑

` |yi|q
) 1
q

that ||xy|| ≤ ||x||p||y||q, where
1

p
+

1

q
= 1.

Definition 2.7 (Continuous Function) Let (S, ds) and (T, dT ) be metric spaces

and let f : S → T be a function from S to T . The function f is said to be continuous

at a point P in S if for every ε > 0 there is a f > 0 such that, dT (f(x), f(p)), ε,

whenever ds(x, p), ε.

Definition 2.8 (Dense Set) A point x is a limit point of A if given ε < 0, there

exixts Y ∈ A, Y /∈ x, with ρ(y, x) < ε. We say that A is a dense set.

Definition 2.9 (Function spaces) Let S ⊆ Rd be open. For a weight function

w : Rd → (0,∞) which is integrable on bounded subset of Rd, p ∈ [1,∞), and X a

Banach space, we work with the Bochner spaces Lp(S,w;X) with norm defined by

‖u‖pLp(S,w;X) =

∫
S

‖u(t)‖pXw(t)dt,

We also use the corresponding Sobolev spaces defined by

‖u‖pW 1,p(S,w;X) = ‖u‖pLp(S,w;X) + ‖u′‖pLp(S,w;X)

If q < p, and wα(x) = |x|α with α/d < p
q
− 1, note that, by Hölder inequality

Lp(S,wα;X) ↪→ Lq(S;X).

In several cases the class of weight we will consider is the class of Ap-weights

w : Rd → (0,∞). Recall that w ∈ Ap if and only if the Hardy-Littlewood maximal

function is bounded on Lp(Rd, w).

For p ∈ (1,∞) and an Ap-weight w let the Bessel potential spaces Hs,p(Rd, w;X)
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be defined as the space of all f ∈ S ′(Rd;X) := L(S(Rd), X) for which F−1[(1 + | ·
|2)s/2f̂ ∈ Lp(Rd, w;X). Here F denotes the Fourier transform. Then Hs,p(Rd, w;X)

is a Banach space when equipped with the norm

‖f‖Hs,p(Rd,w;X) = ‖F−1[(1 + | · |2)s/2f̂ ]‖Lp(Rd,w;X).

The following is a well known consequence of Fourier multiplier theory.

Lemma 2.10 Let X be a UMD Banach space, p ∈ (1,∞), s ∈ R, r > 0 and k ∈ N.
Then the following give equivalent norms on Hs,p(Rd;X) :

‖(−∆)r/2u‖Hs−r,p(Rd;X) + ‖u‖Hs−r,p(Rd;X),∑
|α|=k

‖∂αu‖Hs−k,p(Rd;X) + ‖u‖Hs−k,p(Rd;X).

The spaces Hs,p will also be needed on bounded open intervals I. For a I ⊆ R, p ∈
(1,∞), w ∈ Ap, s ∈ R the space Hs,p(I, w;X) is defined as all restriction f |I where

f ∈ Hs,p(I, w;X). This is a Banach space when equipped with the norm

‖f‖Hs,p(I,w;X) = inf{‖g‖Hs,p(R,w;X) : g|I = f}.

Either by repeating the proof of Lemma (2.10) or by reducing to it by applying

a bounded extension operator from Hθ,p(I, w;Y ) → Hθ,p(R, w;Y ) and Fubini, we

obtain the following norm equivalence.

Lemma 2.11 Let X be a UMD space, p ∈ (1,∞), s ∈ R, r > 0, k ∈ N, and let I ⊆ R
be an open interval. Let θ ∈ (0, 1) and w ∈ Ap. Then the following two norms give

equivalent norms on Hθ,p(I;Hs,p(Rd;X)) :

‖(−∆)r/2u‖Hθ,p(I,w;Hs−r,p(Rd;X)) + ‖u‖Hθ,p(I;Hs−r,p(Rd;X)),∑
|β|=k

‖∂βu‖Hθ,p(I;Hs−k,p(Rd;X)) + ‖u‖Hθ,p(I;Hs−k,p(Rd;X)).

Stochastic integration

Let LpF(Ω;Lq(I;X)) denote the space of progressively measurable processes

in Lp(Ω;Lq(I;X)).
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The Itô integral of an F -adapted finite rank step process in γ(H,X), with respect

to an F -cylindrical Brownian motion WH , is defined by

∫
R+

N∑
k=1

M∑
j=1

1(tk,tk+1]×Fk ⊗ (hj ⊗ xk) dWH :=
N∑
k=1

M∑
j=1

1Fk

[
WH(tk+1)hj

−WH(tk)hj

]
⊗ xk,

for N ∈ N, 0 ≤ t1 < t2 < · · · < tN+1, and for all k = 1, . . . , N, Fk ∈ Ftk , hk ∈ H, xk ∈
X. The following version of Itô’s isomorphism holds for such processes:

Theorem 2.12 Let X be a UMD Banach space and let G be an F -adapted finite

rank step process in γ(H,X). For all p ∈ (1,∞) one has the two-sided estimate

E sup
t≥0

∥∥∥∫ t

0

G(s) dWH(s)
∥∥∥p hp E‖G‖pγ(L2(R+;H),X)), (2)

with implicit constants depending only on p and (the UMD constant of) X.

The class of UMD Banach spaces includes all Hilbert spaces, and all Lq(O;G)

spaces for q ∈ (1,∞), and G another UMD space. It is stable under isomorphism of

Banach spaces, and included in the class of reflexive Banach spaces. Closed subspaces,

quotients, and duals of UMD spaces are UMD.

Theorem (2.12) allows one to extend the stochastic integral, by density, to

the closed linear span in Lp(Ω; γ(L2(R+;H), X)) of all F -adapted finite rank step

processes in γ(H,X)). We denote this closed linear span by LpF(Ω; γ(L2(R+;H), X)).

Moreover, this set coincides with the progressively measurable processes in

Lp(Ω; γ(L2(R+;H), X)).

If the UMD Banach space X has type 2 (and thus martingale type 2), then one

has a continuous embedding L2(R+; γ(H,X)) ↪→ γ(L2(R+;H), X).

In such a Banach space, (2) implies that

E sup
t≥0

∥∥∥∫ t

0

G(s) dWH(s)
∥∥∥p ≤ CpE‖G‖pL2(R+;γ(H,X)), (3)
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where C depends on X and p. The stochastic integral thus uniquely extends to

LpF ( Ω ;L2 ( R+ ; γ (H, X))).

Note, however, that the sharp version of Itô’s isomorphism given in Theorem

(2.12) is critical to prove stochastic maximal regularity, even in time-independent

situations. The weaker estimate (3) (where the right hand side would typically be

L2(R+;Lp(Rd)) instead of Lp(Rd;L2(R+))) does not suffice for this purpose.

3 Maximal Regularity for Stochastic Evolution Equations

In this section we consider the semilinear stochastic evolution equation{
dU(t) + A(t)U(t)dt = F (t, U(t))dt+

(
B(t)U(t) +G(t, U(t))

)
dWH(t),

U(0) = u0.
(4)

Here A(t) and B(t) are linear operators which are (t, ω)-dependent. The functions F

and G are nonlinear perturbations.

The deterministic case

Consider the following hypotheses.

Assumption 3.1 Let X0 and X1 be Banach spaces such that X1 ↪→ X0 is dense.

Let Xθ = [X0, X1]θ and Xθ,p = (X0, X1)θ,p denote the complex and real interpolation

spaces at θ ∈ (0, 1) and p ∈ [1,∞], respectively.

For f ∈ L1(I;X0) with I = (0, T ) and T ∈ (0,∞] we consider:{
u′(t) + A(t)u(t) = f(t), t ∈ I

u(0) = 0.
(5)

We say that u is a strong solution of (5) if for any finite interval J ⊆ I we have

u ∈ L1(J ;X1) and

u(t) +

∫ t

0

A(s)u(s)ds =

∫ t

0

f(s)ds, t ∈ J, (6)

Note that this identity yields that u ∈ W 1,1(J ;X0) and u ∈ C(J ;X0) for bounded

J ⊆ I.
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Definition 3.1 (Deterministic maximal regularity) Let Assumption (3.1) be sat-

isfied and assume that A : [s,∞) → L(X1, X0) is strongly measurable and

supt∈R ‖A(t)‖L(X1,X0) < ∞. Let p ∈ (1,∞), α ∈ (−1, p − 1), T ∈ (0,∞], and set

I = (0, T ). We say that A ∈ DMR(p, α, T ) if for all f ∈ Lp(I, wα;X0), there exists a

strong solution

u ∈ W 1,p(I, wα;X0) ∩ Lp(I, wα;X1)

of (5) and

‖u‖W 1,p(I,wα;X0) + ‖u‖Lp(I,wα;X1) ≤ C‖f‖Lp(I,wα;X0). (7)

In (6) we use the continuous version of u : I → X0. By Proposition ?? for

α ∈ [0, p− 1) we have

u ∈ Cub(I;X1− 1+α
p
,p) and u ∈ Cub([ε, T ];X1− 1

p
,p), ε ∈ (0, T ).

If α ∈ (−1, 0) the first assertion does not hold, but the second one holds on [0, T ]ifT <

∞.

Remark 3.1 Although we do allow T =∞ in the above definition, most result will

be formulated for T ∈ (0,∞) as this is often simpler and enough for applications to

PDEs.

Note that A ∈ DMR (p, α, T ) implies that the solution u is unique (use (7)).

Furthermore, it implies unique solvability of (5) on subintervals J = (a, b) ⊆ I. In

particular, DMR (p, α, T ) implies DMR(p, α, t) for all t ∈ (0, T ].

Hypothesis on A and B and the definition of SMR

Consider the following hypotheses.

Assumption 3.2 Let H be a separable Hilbert space. Assume X0 and X1 are UMD

spaces with type 2. Let A : R+×Ω→ L(X1, X0) be strongly progressively measurable

and CA := sup
t∈R,ω∈Ω

‖A(t, ω)‖L(X1,X0) <∞.

Let B : R+ ×Ω→ L(X1,L(H,X 1
2
)) be such that for all x ∈ X1 and h ∈ H, (Bx)h is

strongly progressively measurable and assume there is a constant C such that

CB := sup
t∈R,ω∈Ω

‖B(t, ω)‖L(X1,L(H,X 1
2

)) <∞.
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For f ∈ L1(I;X0) and g ∈ L2(I; γ(H,X 1
2
)) with I = (0, T ) and T ∈ (0,∞] we

consider: {
dU(t) + A(t)U(t)dt = f(t)dt+

(
B(t)U(t) + g(t)

)
dWH(t),

U(0) = 0.
(8)

We say that U is a strong solution of (4) if for any finite interval J ⊆ I we have

U ∈ L0
F(Ω;L2(J ; γ(H,X1))) and almost surely for all t ∈ I,

U(t) +

∫ t

0

A(s)U(s)ds =

∫ t

0

f(s)ds+

∫ t

0

(
g(s) +B(s)U(s)

)
dWH(s), (9)

The above stochastic integrals are well-defined by (3). Identity (9) yields that U has

paths in C(J ;X0) for bounded J ⊆ I.

Definition 3.2 (Stochastic maximal regularity) Suppose Assumptions 3.1 and 3.2

hold. Let p ∈ [2,∞), α ∈ (−1, p
2
− 1)(α = 0 is included if p = 2), T ∈ (0,∞], and set

I = (0, T ). We say that (A,B) ∈ SMR(p, α, T ) if for all f ∈ LpF(Ω × I, wα;X0) all

g ∈ LpF(Ω× I, wα; γ(H,X 1
2
)), there exists a strong solution

U ∈
⋂

θ∈[0, 1
2

)

Lp(Ω;Hθ,p(I, wα;X1−θ))

of (8) and for each θ ∈ [0, 1
2
) there is a constant Cθ such that

‖U‖Lp(Ω;Hθ,p(I,wα;X1−θ))

≤ Cθ‖f‖Lp(Ω×I,wα;X0) + Cθ‖g‖Lp(Ω×I,wα;γ(H,X 1
2

)).
(10)

In the case B = 0 we write A ∈ SMR(p, α, T ) instead of (A, 0) ∈ SMR (p, α, T )

In the above we use a pathwise continuous version of U : Ω × I → X0. By

Proposition 2.5 if α ∈ [0, p
2
− 1) we even have

U ∈ Lp(Ω;C(I;X1−α+1
p
,p)) and U ∈ Lp(Ω;C([ε, T ];X1−α+1

p
,p)).

If α ∈ (−1, 0) the first assertion does not hold, but the second one holds on [0, T ]ifT <

∞. A variant of Remark holds for SMR. In particular, any of the estimates (10)

implies uniqueness.
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4 Conclusion

In this paper, we discussed about Measurability, Functional calculus, Function

spaces, Stochastic integration. Also we discussed about Maximal regularity for

stochastic evolution equations and their Hypothesis.
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