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Abstract 

In this paper, Runge Kutta method of order 4 is used to study the electrical circuits designs 

through past, intermediate and present voltages. When integrating differential equations with 

Runge Kutta method of order 4, a constant step size (ℎ) is used until a testing procedure 

confirms that the discontinuity occurs in the present integration interval. This step size 

function calculations would take place at the end of the functional calculations, but before the 

dependent variables were updated. Runge Kutta methods along with convolution are given by 

array interpretation (Butcher matrix) representation, this leads to identify the equilibrium 

state. The input parameters indicate the voltage coefficient controlled by current sources and 

measures it a random periodic time. The output parameters provide stable independent values 

and calculated from past voltage and current values. Finally solutions are compared with 

exact values and RK method of order 4 along with Heun, Midpoint and Taylors’s method 

with various ℎ values. 
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1 Introduction 

Numerous branches of economics, science, engineering and technology are 

commonly contain numerical methods and analysis. Runge Kutta Method of order 4 is 

reasonably simple and robust and is used to analyze the transient behaviors of RLC circuit 

taken into consideration of higher order accuracy in multi-stage. It involves slope calculations 

at multiple steps between the current and the consecutive discrete time values combined with 

an intelligent adaptive step-size routine [4]. RK method of order 4 preserves stability, 

provided that the step size h does not become too large [7, 11]. In the general observation, 

higher order RK methods allows us to increase / decrease the step size and obtaining good 

accuracy but the stability of the algorithms establishes limits to the value of h. This method 

avoids the higher order derivatives of the unknown function 𝑦 and obtained the higher order 

accuracy [18] because of its computation potential, accuracy, flexibility and the possibility of 

changing the integration step. Large scale parallel processing system without redesigning the 

structure is processed by Runge Kutta method of order 4 with small ℎ values [3, 14]. An 

efficient implementation and designing the circuits are evaluated and analyzed the scalability 

and throughput [5, 16].   

The Runge Kutta technique is a one-step method with several stages whose order is 

determined by the number of stages [1, 17]. This technique and approach is used to solve 

differential equations of various types, including explicit, implicit, partial, and delay 

differential equations [2, 10]. This method played a significant role in the study of explicit 

and implicit iterative strategies for solving ODEs with temporal dissipation. Higher order 

stability preserving Runge Kutta discretizations were created for use with semi-discrete 

method of approximations of hyperbolic partial differential equations, and have been found to 

be useful in a diverse of other situations [6]. Because hyperbolic problems and its issues are 

often leads discontinuous solutions and the nonlinear stability features are almost critical [9, 

15]. 

When utilizing a linearly stable, high-order approach that lacks the strong stability 

feature and numerical data showed that oscillations can arise [8, 13]. For a nonlinear ODE, 

any Runge Kutta technique of fifth order or above will have at least one negative coefficient. 

As a result, we recognize that negative coefficients must be addressed when using Runge 

Kutta methods to solve nonlinear ODEs [12].  
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This paper is organized as follows. Section II focused the convolution of Runge Kutta 

method of order 4. Equilibrium state and array interpretation (Butcher matrix) representation 

of RK method of order 4 along with the convolution of past, intermediate and present 

voltages are studied in this section. In section III, the input parameters indicate the voltage 

coefficient which is controlled by current sources and measures in a random periodical time. 

The output parameters provide stable independent values and calculated from past voltage 

and current values. Section IV presents the implementation of numerical integration for 

nonlinear capacitors. Comparing exact values with RK method of order 4, Heun, Midpoint 

and Taylors’s method with various ℎ values are calculated.  Finally section V concludes the 

paper. 

2 Convolution and Runge Kutta method of order 4 

 Consider the following first order linear differential equation, 

𝑦′ = 𝑓(𝑡, 𝑦) 

Runge Kutta methods along with convolution are given by 

𝑌𝑖 = 𝑦𝑛 + ℎ ∑ 𝑎𝑖𝑗 ∗ 𝑓(𝑡𝑛 + 𝑐𝑗ℎ , 𝑌𝑗)

𝑠

𝑗=1

      (𝑖 = 0,1, … , 𝑠) 

      𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑ 𝑏𝑖 ∗ 𝑓(𝑡𝑛 + 𝑐𝑖ℎ , 𝑌𝑖)

𝑠

𝑗=1

                                                                  (1) 

(1) is given by the array interpretation (Butcher matrix) representation and this type 

arrangement is shown in table 1 and is explicit when upper triangular coefficients  𝑎𝑖𝑗(𝑖 ≤ 𝑗) 

are zero and pass through towards equilibrium state and implicit except these conditions (i.e., 

𝑎𝑖𝑗(𝑖 ≤ 𝑗) are non zero and does not pass through equilibrium state. 

𝑐1 𝑎11 𝑎12 ⋯ 𝑎1𝑠 

𝑐2 𝑎21 𝑎22 ⋯ 𝑎2𝑠 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 ⋯ 𝑎𝑠𝑠 
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 𝑏1 𝑏2 ⋯ 𝑏𝑠 

  Table 1: Array interpretation (Butcher matrix) representation of equation 1 

Assume that 𝑚𝑖𝑗 = 𝑎𝑖𝑗 , 𝑚10 = 𝑎20 = 0, . . . , 𝑚𝑖𝑗 = 𝑎(𝑖−1)(𝑗−1). 

𝑌(𝑡𝑎) − 𝑦(𝑡𝑛) − ℎ𝑚10𝑓(𝑡𝑛) − ℎ𝑚11𝑓(𝑡𝑎) − ℎ𝑚12𝑓(𝑡𝑛+1) = 0 

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) − ℎ𝑚20 ∗ 𝑓(𝑡𝑛) − ℎ𝑚21 ∗ 𝑓(𝑡𝑎) − ℎ𝑚22 ∗ 𝑓(𝑡𝑛+1) = 0                   (2) 

  where 𝑡𝑛, 𝑡𝑎 and 𝑡𝑛+1  indicates past, intermediate and present time domain. 

  

3 Equivalent models for a linear element -Linear device 

Applying (2) to the following equation for a linear capacitor (𝐶) and voltage 𝑣𝑐: 

𝑖(𝑡) = 𝐶
𝑑𝑣𝑐

𝑑𝑡
 

And we get 

𝑖𝑎 =
(𝑚12 − 𝑚22)𝑣𝑛 + 𝑚22𝑣𝑎 − 𝑚22𝑣𝑛+1 −

ℎ

𝑐
(𝑚10𝑚22 − 𝑚12𝑚20)𝑖𝑛

ℎ

𝑐
(𝑚;11 𝑚22 − 𝑚12𝑚21)

 

𝑖𝑛+1 =
(−𝑚11 + 𝑚21)𝑣𝑛 − 𝑚21𝑣𝑎 + 𝑚11𝑣𝑛+1 +

ℎ

𝑐
(𝑚10𝑚22 − 𝑚11𝑚20)𝑖𝑛

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

          (3) 

where 𝑣𝑛, 𝑣𝑎 and 𝑣𝑛+1  indicate a past, intermediate and present voltages. 𝑖𝑛 represent the 

final current value at time 𝑡.  The equation for the simulation is given by 

[

   𝐵 −𝐵
−𝐵     𝐵

    𝐴 −𝐴
−𝐴   𝐴

   𝐸 −𝐸
−𝐸    𝐸

    𝐷 −𝐷
−𝐷   𝐷

] [

𝑣1,𝑛+1

𝑣2,𝑛+1

𝑣1,𝑎

𝑣2,𝑎

] = [

−𝑃
   𝑃
−𝐹
   𝐹

]     (4) 

where 𝑣1,𝑎 and 𝑣2,𝑎 are the voltages in the intermediate time 𝑡𝑎 .  𝑣1,𝑛+1 and 𝑣2,𝑛+1 are the 

voltages at a present time 𝑡𝑛+1 and  𝑡𝑛+1. The input parameters 𝐴 and 𝐸 indicates the 
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coefficients of the voltage controlled by current sources. In particular 𝐴 is controlled by  𝑣𝑐𝑎 

and 𝐸 is controlled by 𝑣𝑐𝑛+1. Further 𝐴 and 𝐸 are defined like: 

𝐴 =
−𝑚21

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

,      𝐸 =
−𝑚12

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

 

The input parameters 𝐵 and 𝐷 indicates the coefficients of the voltage in a particular random 

periodic time. Further 𝐴 and 𝐸 are defined like: 

𝐵 =
𝑚11

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

,      𝐷 =
𝑚22

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

 

The output parameters 𝑃 and 𝐹 are stable independent values and calculated from past 

voltage and current values. Further 𝑃 and 𝐹 are defined like: 

𝑃 =
(−𝑚11 + 𝑚21)𝑣𝑐𝑛

+
ℎ

𝑐
(𝑚10𝑚20 − 𝑚12𝑚21)𝑖𝑐𝑛

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

 

𝐹 =
(𝑚12 − 𝑚22)𝑣𝑐𝑛

+
ℎ

𝑐
(𝑚10𝑚22 − 𝑚12𝑚20)𝑖𝑐𝑛

ℎ

𝑐
(𝑚11𝑚22 − 𝑚12𝑚21)

 

Here 𝑖𝑐𝑛
 represents the current that pass through the capacitor. The similar equivalent circuits 

can be compared with the Runge Kutta method of order 4 and, moreover, to ensure the 

stability conditions of the variables are verified at random periodical time.  

 

4 Implementation of numerical integration for nonlinear capacitors 

 

This implementation consists of resistors, diodes and voltages. A diode model consists of a 

contact resistance  𝑅𝑠, a nonlinear conductor 𝑔(𝑣) and a nonlinear capacitor 𝑞(𝑣). The 

relationship between the nonlinear capacitor 𝑞(𝑣) with the voltage be like: 

𝑞(𝑣) = 𝑇𝑡𝐼𝑠 (𝑒𝑥𝑝 (
𝑣

𝑁𝑉𝑡
) − 1)                                                     (5) 

where 𝑇𝑡, 𝐼𝑠 and 𝑁 indicates run time, a saturation current and coefficient of emission.  

Applying higher iterations to 𝑖𝑐𝑛
,  
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𝑖𝑐𝑛
(𝑗+1)

=
𝑚22

ℎ𝛼
{𝑞 (𝑣𝑎

(𝑗)
) + 𝐶𝑎

(𝑗)
(𝑣𝑎

(𝑗+1)
− 𝑣𝑎

(𝑗)
)} −

𝑚12

ℎ𝛼
{𝑞 (𝑣𝑛+1

(𝑗)
) + 𝐶𝑛+1

(𝑗)
(𝑣𝑛+1

(𝑗+1)
− 𝑣𝑛+1

(𝑗)
)}

+
1

ℎ𝛼
{(𝑚12 − 𝑚22)𝑞(𝑣(𝑛)) − ℎ(𝑚10𝑚22 − 𝑚12𝑚20)𝐶𝑛}

𝑖𝑐𝑛+1
(𝑗+1)

=
𝑚22

ℎ𝛼
{𝑞 (𝑣𝑛+1

(𝑗)
) + 𝐶𝑛+1

(𝑗)
(𝑣𝑛+1

(𝑗+1)
− 𝑣𝑛+1

(𝑗)
)} −

𝑚12

ℎ𝛼
{𝑞 (𝑣𝑎

(𝑗)
) + 𝐶𝑎

(𝑗)
(𝑣𝑎

(𝑗+1)
− 𝑣𝑎

(𝑗)
)}

+
1

ℎ𝛼
{(𝑚21 − 𝑚11)𝑞(𝑣(𝑛)) + ℎ(𝑚10𝑚21 − 𝑚11𝑚20)𝐶𝑛}

 

            (6) 

where 𝑗 represents the number of iterations. Parameters 𝐶𝑎
(𝑗)

, 𝐶𝑛+1
(𝑗)

, 𝐶𝑛 and 𝛼 in (6) are given 

by 

𝐶𝑎
(𝑗)

=
𝜕𝑞(𝑣)

𝜕𝑣
|

𝑣=𝑣𝑎
(𝑗)

                     𝐶𝑛+1
(𝑗)

=
𝜕𝑞(𝑣)

𝜕𝑣
|

𝑣=𝑣𝑛+1
(𝑗)

 

𝐶𝑛 =
𝜕𝑞(𝑣)

𝜕𝑣
|

𝑣=𝑣𝑛

                𝛼 = 𝑚11𝑚22 − 𝑚12𝑚21 

Equation (6) is rewritten as a simplified form as: 

𝑖𝑐𝑎
(𝑗+1)

= 𝐺𝑐𝑎
(𝑗)

𝑣𝑎
(𝑗+1)

+ 𝑔𝑐𝑛+1
(𝑗)

𝑣𝑛+1
(𝑗+1)

+ 𝐼𝑐𝑎
(𝑗)

 

𝑖𝑐𝑛+1
(𝑗+1)

= 𝐺𝑐𝑛+1
(𝑗)

𝑣𝑛+1
(𝑗+1)

+ 𝑔𝑐𝑎
(𝑗)

𝑣𝑎
(𝑗+1)

+ 𝐼𝑐𝑛+1
(𝑗)

                                    (7) 

where  𝐺𝑐𝑎
(𝑗)

 and 𝐺𝑐𝑛+1
(𝑗)

 are conductance’s and are defined by 

𝐺𝑐𝑎
(𝑗)

=
𝑚22

ℎ𝛼
𝐶𝑎

(𝑗)
             𝐺𝑐𝑛+1

(𝑗)
=

𝑚11

ℎ𝛼
𝐶𝑛+1

(𝑗)
 

𝑔𝑐𝑛+1
(𝑗)

  and  𝑔𝑐𝑎
(𝑗)

 in (7) shows the coefficients of voltage. Simultaneously the coefficient of 

  𝑔𝑐𝑛+1
(𝑗)

   is connected to the equivalent circuit at 𝑡𝑎 and controlled by voltage at  𝑡𝑛+1. 

Parameter 𝑔𝑐𝑎
(𝑗)

  is connected to the equivalent circuit at  𝑡𝑛+1  and controlled by voltage at 𝑡𝑎 

and defined as 

𝑔𝑐𝑛+1
(𝑗)

= −
𝑚12

ℎ𝛼
𝐶𝑛+1

(𝑗)
             𝑔𝑐𝑎

(𝑗)
= −

𝑚21

ℎ𝛼
𝐶𝑎

(𝑗)
 

𝐼𝑐𝑎
𝑘  and 𝐼𝑐𝑛+1

𝑘  in (7) are defined like 
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𝐼𝑐𝑎
(𝑗)

= 𝐼𝑐1
(𝑗)

+ 𝑖𝑐1
(𝑗)

+ 𝐼𝑐1𝑛 

𝐼𝑐𝑛+1
(𝑗)

= 𝐼𝑐2
(𝑗)

+ 𝑖𝑐2
(𝑗)

+ 𝐼𝑐2𝑛 

where each term is calculated by 

𝐼𝑐1
(𝑗)

=
𝑚22

ℎ𝛼
 [𝑞 (𝑣𝑎

(𝑗)
) + 𝑇𝑡𝐼𝑠 − 𝐶𝑎

(𝑗)
𝑣𝑎

(𝑗)
] 

𝐼𝑐2
(𝑗)

=
𝑚11

ℎ𝛼
[𝑞 (𝑣𝑛+1

(𝑗)
) + 𝑇𝑡𝐼𝑠 − 𝐶𝑛+1

(𝑗)
𝑣𝑛+1

(𝑗)
] 

𝑖𝑐1
(𝑗)

=
𝑚12

ℎ𝛼
[𝐶𝑛+1

(𝑗)
𝑣𝑛+1

(𝑗)
− 𝑞 (𝑣𝑛+1

(𝑗)
) − 𝑇𝑡𝐼𝑠] 

𝑖𝑐2
(𝑗)

=
𝑚21

ℎ𝛼
[𝐶𝑎

(𝑗)
𝑣𝑎

(𝑗)
− 𝑞 (𝑣𝑎

(𝑗)
) − 𝑇𝑡𝐼𝑠] 

𝐼𝑐1𝑛 =
𝑇𝑡𝐼𝑠(𝑚12 − 𝑚22)

ℎ𝛼
+

𝑇𝑡𝐼𝑠

ℎ𝛼
[{(𝑚12 − 𝑚22) − ℎ(𝑚10𝑚22 − 𝑚12𝑚20)}𝑞(𝑣𝑛) + 𝑇𝑡𝐼𝑠 − 1] 

𝐼𝑐2𝑛 =
𝑇𝑡𝐼𝑠(𝑚21 − 𝑚11)

ℎ𝛼
+

𝑇𝑡𝐼𝑠

ℎ𝛼
[{(𝑚21 − 𝑚11) − ℎ(𝑚10𝑚21 − 𝑚11𝑚20)}𝑞(𝑣𝑛) + 𝑇𝑡𝐼𝑠 − 1] 

The nonlinear physical phenomenon is linearized by applying Newton's methodology 

on  𝑡𝑎  and  𝑡𝑛+1 both are associated intermediately. Therefore, the equivalent nonlinear 

electrical model consists of  𝐺𝑔𝑎
(𝑗)

 and  𝐺𝑔𝑛+1
(𝑗)

  (conductance) and the parallel current sources 

 𝐼𝑔𝑎
(𝑗)

 and  𝐼𝑔𝑛+1
(𝑗)

 which are defined as: 

𝐺𝑔𝑎
(𝑗)

 =
𝜕𝑔(𝑣)

𝜕𝑣
|

𝑣=𝑣𝑎
(𝑗)

                     𝐺𝑛+1
(𝑗)

=
𝜕𝑔(𝑣)

𝜕𝑣
|

𝑣=𝑣𝑛+1
(𝑗)

 

              𝐼𝑔𝑎
(𝑗)

= 𝑔 (𝑣𝑎
(𝑗)

) − 𝐺𝑔𝑎
(𝑗)

𝑣𝑎
(𝑗)

            𝐼𝑔𝑛+1
(𝑗)

= 𝑔 (𝑣𝑛+1
(𝑗)

) − 𝐺𝑔𝑛+1
(𝑗)

𝑣𝑛+1
(𝑗)

 

Homogenous circuit in ( 𝑗 + 1)𝑡ℎ  Newton's iteration and ( 𝑛 + 1)𝑡ℎ  time domain are written 

like, 

𝐺𝑑1
(𝑗)

= 𝐺𝑔𝑎
(𝑗)

+ 𝐺𝑐𝑎
(𝑗)

          𝐺𝑑2
(𝑗)

= 𝐺𝑔𝑛+1
(𝑗)

+ 𝐺𝑐𝑛+1
(𝑗)

 

𝐼𝑑1
(𝑗)

= 𝐼𝑔𝑎
(𝑗)

+ 𝐼𝑐𝑎
(𝑗)

          𝐼 𝑑2
(𝑗)

= 𝐼𝑔𝑛+1
(𝑗)

+ 𝐼𝑐𝑛+1
(𝑗)
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The dimension of equivalent circuits becomes Runge Kutta method of order 4.  The voltage 

controlled by the current  𝑖𝐶𝐸   is controlled by 𝑣𝐵𝐶  and 𝑣𝐵𝐸   and is given by 

𝑖𝐶𝐸 =
𝐼𝑆

 𝑄𝐵  
(𝑒𝑥𝑝 {

𝑣𝐵𝐸

𝑁𝐹 . 𝑉𝑇

} − 𝑒𝑥𝑝 {
𝑣𝐵𝐶

𝑁𝑅. 𝑉𝑇

})  

where 𝑄𝐵 is charge density, 𝑁𝐹 and 𝑁𝑅 are forward and reverse current emission coefficients. 

𝑉𝑇 is termed as thermal voltage and is given by 𝑘𝑇/𝑞. Forward that  𝑖𝐶𝐸  =  𝑓𝐶𝐸( 𝑣𝐵𝐸  , 𝑣𝐵𝐶  ), 

and apply Newton's methodology to voltages and current within the intervals. 

Then  𝑖𝐶𝐸(𝑛+1) , 𝑖𝐶𝐸(𝑎) are  given by 

𝑖𝐶𝐸(𝑛+1)
(𝑗+1)

= 𝑖0(𝑛+1)
(𝑗)

+ 𝑔𝐵𝐶(𝑛+1)
(𝑗)

𝑣𝐵𝐶(𝑛+1)
(𝑗+1)

+ 𝑔𝐵𝐸(𝑛+1)
(𝑗)

𝑣𝐵𝐸(𝑛+1)
(𝑗+1)

    (8) 

𝑖𝐶𝐸(𝑎)
(𝑗+1)

= 𝑖0(𝑎)
(𝑗)

+ 𝑔𝐵𝐶(𝑎)
(𝑗)

𝑣𝐵𝐶(𝑎)
(𝑗+1)

+ 𝑔𝐵𝐸(𝑎)
(𝑗)

𝑣𝐵𝐸(𝐴)
(𝑗+1)

     (9) 

Parameters 𝑔𝐵𝐸(𝑛+1)
(𝑗)  , 𝑔𝐵𝐸(𝑎)

(𝑗)
 , 𝑔𝐵𝐶(𝑛+1)

(𝑗)  and 𝑔𝐵𝐶(𝑎)
(𝑗)

 indicate the coefficients of the current 

sources. These are invariably controlled by the   𝑣𝐵𝐸. The parameters  𝑖0(𝑛+1)
(𝑗)  and 𝑖0(𝑎)

(𝑗)
 are  

referred as current sources. The results of every parameter are shown as follows: 

𝑔𝐵𝐶(𝑛+1)
(𝑗)

=
𝐼𝑆

 𝑄𝐵(𝑛+1). 𝑁𝐹 . 𝑉𝑇
 𝑒𝑥𝑝 {

𝑣𝐵𝐸(𝑛+1)
(𝑗)

𝑁𝐹 . 𝑉𝑇
} 

𝑔𝐵𝐶(𝑎)
(𝑗)

=
𝐼𝑆

 𝑄𝐵(𝑎). 𝑁𝐹 . 𝑉𝑇
 𝑒𝑥𝑝 {

𝑣𝐵𝐸(𝑎)
(𝑗)

𝑁𝐹 . 𝑉𝑇
} 

𝑔𝐵𝐸(𝑛+1)
(𝑗)

=
𝐼𝑆

 𝑄𝐵(𝑛+1). 𝑁𝑅. 𝑉𝑇
 𝑒𝑥𝑝 {

𝑣𝐵𝐶(𝑛+1)
(𝑗)

𝑁𝑅. 𝑉𝑇
} 

𝑔𝐵𝐸(𝑎)
(𝑗)

=
𝐼𝑆

 𝑄𝐵(𝑎). 𝑁𝑅. 𝑉𝑇
 𝑒𝑥𝑝 {

𝑣𝐵𝐶(𝑎)
(𝑗)

𝑁𝑅. 𝑉𝑇
} 

𝑖0(𝑛+1)
(𝑗)

=
𝐼𝑆

 𝑄𝐵(𝑛+1)

(1 −
𝑣𝐵𝐸(𝑛+1)

(𝑗)

𝑁𝐹 . 𝑉𝑇

)  𝑒𝑥𝑝 {
𝑣𝐵𝐶(𝑛+1)

(𝑗)

𝑁𝐹 . 𝑉𝑇
} + (−1 +

𝑣𝐵𝐶(𝑛+1)
(𝑗)

𝑁𝑅. 𝑉𝑇

) 𝑒𝑥𝑝 {
𝑣𝐵𝐶(𝑛+1)

(𝑗)

𝑁𝑅. 𝑉𝑇
} 

𝑖0(𝑎)
(𝑗)

=
𝐼𝑆

 𝑄𝐵(𝑎)

(1 −
𝑣𝐵𝐸(𝑎)

(𝑗)

𝑁𝐹 . 𝑉𝑇

)  𝑒𝑥𝑝 {
𝑣𝐵𝐶(𝑎)

(𝑗)

𝑁𝐹 . 𝑉𝑇
} + (−1 +

𝑣𝐵𝐶(𝑎)
(𝑗)

𝑁𝑅. 𝑉𝑇

) 𝑒𝑥𝑝 {
𝑣𝐵𝐶(𝑎)

(𝑗)

𝑁𝑅. 𝑉𝑇
} 
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Hence the computations of RK method of order 4, yield the exact solutions as well as how to 

diminish or control the error. The error in interpolation can be expressed as 

𝑓(𝑥)(𝑡) = 2𝑥𝑥! ∗ 𝑂(𝑥(2+𝑛)),            𝑛 → ∞ 

approximate values are: 𝑡 >  ℎ.  Figures 1 to 3 presents the comparison of exact values with 

RK method of order 4, Heun, Midpoint and Taylors’s method with various ℎ values. 

 

Figure 1: Comparing exact values with RK method of order 4, Heun, Midpoint and 

Taylors’s method when 𝒉 = 𝟎. 𝟐𝟓 and 𝒉 = 𝟎. 𝟑𝟓 

 

 Figure 2: Comparing exact values with RK method of order 4, Heun, Midpoint and 

Taylors’s method when 𝒉 = 𝟎. 𝟒𝟓 and 𝒉 = 𝟎. 𝟓𝟓 
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Figure 3: Comparing exact values with RK method of order 4, Heun, Midpoint and 

Taylors’s method when 𝒉 = 𝟎. 𝟔𝟓 and 𝒉 = 𝟎. 𝟕𝟓 

4 Conclusion 

 

Equilibrium state and array interpretation (Butcher matrix) representation of RK 

method of order 4 along with the convolution of past, intermediate and present voltages are 

studied. Constant step size (ℎ) is used until a testing procedure confirms that the 

discontinuity occurs in the present integration interval. This step size function calculations 

would take place at the end of the functional calculations, but before the dependent variables 

were updated. The input parameters indicate the voltage coefficient which is controlled by 

current sources and measures in a random periodic time. The output parameters provide 

stable independent values and calculated from past voltage and current values. 

Implementations of numerical integration for nonlinear capacitors are presented. Finally we 

compared the exact values with RK method of order 4, Heun, Midpoint and Taylors’s method 

with various ℎ values.  
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