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Abstract

In this paper, Runge Kutta method of order 4 is used to study the electrical circuits designs
through past, intermediate and present voltages. When integrating differential equations with
Runge Kutta method of order 4, a constant step size (h) is used until a testing procedure
confirms that the discontinuity occurs in the present integration interval. This step size
function calculations would take place at the end of the functional calculations, but before the
dependent variables were updated. Runge Kutta methods along with convolution are given by
array interpretation (Butcher matrix) representation, this leads to identify the equilibrium
state. The input parameters indicate the voltage coefficient controlled by current sources and
measures it a random periodic time. The output parameters provide stable independent values
and calculated from past voltage and current values. Finally solutions are compared with
exact values and RK method of order 4 along with Heun, Midpoint and Taylors’s method
with various h values.
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1 Introduction

Numerous branches of economics, science, engineering and technology are
commonly contain numerical methods and analysis. Runge Kutta Method of order 4 is
reasonably simple and robust and is used to analyze the transient behaviors of RLC circuit
taken into consideration of higher order accuracy in multi-stage. It involves slope calculations
at multiple steps between the current and the consecutive discrete time values combined with
an intelligent adaptive step-size routine [4]. RK method of order 4 preserves stability,
provided that the step size h does not become too large [7, 11]. In the general observation,
higher order RK methods allows us to increase / decrease the step size and obtaining good
accuracy but the stability of the algorithms establishes limits to the value of h. This method
avoids the higher order derivatives of the unknown function y and obtained the higher order
accuracy [18] because of its computation potential, accuracy, flexibility and the possibility of
changing the integration step. Large scale parallel processing system without redesigning the
structure is processed by Runge Kutta method of order 4 with small h values [3, 14]. An
efficient implementation and designing the circuits are evaluated and analyzed the scalability
and throughput [5, 16].

The Runge Kutta technique is a one-step method with several stages whose order is
determined by the number of stages [1, 17]. This technique and approach is used to solve
differential equations of various types, including explicit, implicit, partial, and delay
differential equations [2, 10]. This method played a significant role in the study of explicit
and implicit iterative strategies for solving ODEs with temporal dissipation. Higher order
stability preserving Runge Kutta discretizations were created for use with semi-discrete
method of approximations of hyperbolic partial differential equations, and have been found to
be useful in a diverse of other situations [6]. Because hyperbolic problems and its issues are
often leads discontinuous solutions and the nonlinear stability features are almost critical [9,
15].

When utilizing a linearly stable, high-order approach that lacks the strong stability
feature and numerical data showed that oscillations can arise [8, 13]. For a nonlinear ODE,
any Runge Kutta technique of fifth order or above will have at least one negative coefficient.
As a result, we recognize that negative coefficients must be addressed when using Runge

Kutta methods to solve nonlinear ODEs [12].
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This paper is organized as follows. Section Il focused the convolution of Runge Kutta
method of order 4. Equilibrium state and array interpretation (Butcher matrix) representation
of RK method of order 4 along with the convolution of past, intermediate and present
voltages are studied in this section. In section I11, the input parameters indicate the voltage
coefficient which is controlled by current sources and measures in a random periodical time.
The output parameters provide stable independent values and calculated from past voltage
and current values. Section IV presents the implementation of numerical integration for
nonlinear capacitors. Comparing exact values with RK method of order 4, Heun, Midpoint

and Taylors’s method with various h values are calculated. Finally section V concludes the

paper.
2 Convolution and Runge Kutta method of order 4

Consider the following first order linear differential equation,

y' =f(ty)

Runge Kutta methods along with convolution are given by

S
Y'izyn+hzaij*f(tn+cjhly‘) (i =01,..,9)
j=1

S
Yusr =Y +h ) bx f(tn+ i, YD) (1)
j=1
(1) is given by the array interpretation (Butcher matrix) representation and this type
arrangement is shown in table 1 and is explicit when upper triangular coefficients a;;(i < j)
are zero and pass through towards equilibrium state and implicit except these conditions (i.e.,

a;;(i < j) are non zero and does not pass through equilibrium state.

C1 aj a» Ays
Ca az; az; ays
Cs g1 s, Ags
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b, b, b
Table 1: Array interpretation (Butcher matrix) representation of equation 1
Assume that m;; = a;j, myg = azo =0,...,m; = Ai-1)(j-1)-
Y(ta) — y (&) — hmyof(¢,) — hmy, f(85) — hmy, f(6,41) = 0
Y(tni1) = ¥(6n) — hmyg * f(8) — hmyy * f(t) — hiyy * f(tpea) = 0 2)

where t,,, t, and t,,, indicates past, intermediate and present time domain.

3 Equivalent models for a linear element -Linear device

Applying (2) to the following equation for a linear capacitor (C) and voltage v,:

dv,
i(t)=C—
i(t) = 7t
And we get
h ,
(Myy — My)Vy + My — My Vpyq — - (MyoMyy — MyMyg)iy
g =

h .
z (Mm;11 My — MypMy,)

h .
_ (=myq + My )V — My Vg + My Vpyq + - (MyeMaz — My1My0)iy
lny1 = h 3)
z (My1myy; — Mypmyq)

where v, v, and v,,,; indicate a past, intermediate and present voltages. i,, represent the

final current value at time t. The equation for the simulation is given by

B —B A —A Vin+1
-B B -—-A V2n+1 P

E —-E D Vi,a [ (4)
—F E -D V2,a F

where v, , and v, , are the voltages in the intermediate time t, . v; 41 and v, are the

voltages at a present timet,,, and t,,.,. The input parameters Aand E indicates the
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coefficients of the voltage controlled by current sources. In particular A is controlled by v,

and E is controlled by v, . Further A and E are defined like:

—Mmyq —Mmsp
A=y , E=y
- (Mmyymy,; —mypmyy) - (myymyy; — mymyy)

The input parameters B and D indicates the coefficients of the voltage in a particular random

periodic time. Further A and E are defined like:

my, my;
B =3 , D=y
=z (m11m22 - m12m21) z (mnmzz - m12m21)

The output parameters P and F are stable independent values and calculated from past

voltage and current values. Further P and F are defined like:

h ,
p (—=myq + m21)vcn + ;(mwmzo - m12m21)lcn

h
- (myymy,; — mypmyq)

h .
B (myy —my)v,, + = (Mmyomay — MypMyo)ic,

h
- (myymy, — mypmyq)

Here i, represents the current that pass through the capacitor. The similar equivalent circuits
can be compared with the Runge Kutta method of order 4 and, moreover, to ensure the

stability conditions of the variables are verified at random periodical time.

4 Implementation of numerical integration for nonlinear capacitors

This implementation consists of resistors, diodes and voltages. A diode model consists of a
contact resistance Ry, a nonlinear conductor g(v)and a nonlinear capacitor g(v). The

relationship between the nonlinear capacitor q(v) with the voltage be like:

a@) = T,1; (exp (ﬁ) - 1) 5)

where T;, I; and N indicates run time, a saturation current and coefficient of emission.

Applying higher iterations to i, ,
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G =20 (60) 4 ¢ (0% =P} - T2 (v2,) + € (0 - v}

1
+E {(m12 - mzz)CI(v(n)) — h(myomy, — lemZO)Cn}

(=T ) el (0 )}l () + 0 (4 - )

+E {(my, — m11)¢1(”(n)) + h(myemyy — my3my0)Cr}

(6)
where j represents the number of iterations. Parameters Cé’), C,E{L)l, C, and « in (6) are given
by

cO = dq(v) cO — aQ(V)
a av v:v‘(lj) n+1 — av 1;:1;1(1]3_1
_0q() _
Cn = v @ =My1Mpz — MMy,
V=vp

Equation (6) is rewritten as a simplified form as:

(J+1) G(J) (J+1)+g(1) (}+1)+I(})

ca cn+1 n+1

.(j+1 +1 +1
G20 = 6D + g™ + 10, )

where G(] ) and G(] -+1 are conductance’s and are defined by

() - M22 () 0 _ )
Gca h C Gcn+1 h Cn+1
g§{3+1 and g(]) in (7) shows the coefficients of voltage. Simultaneously the coefficient of

ggﬂﬂ is connected to the equivalent circuit att, and controlled by voltage at t,.,;.

Parameter g(]) is connected to the equivalent circuit at t,,, and controlled by voltage at t,

and defined as

0 _ o) 0 _ _Ma1 ()
gcn+1 h CTL+1 gca ha Ca

1%, and I¥, ., in (7) are defined like
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e =13 + 1) + Lean

Ic(1j:t)+1 = Ic(g) + ig) + Ic2n
where each term is calculated by
19 = 22 q (v9) + 1ol - cPv)
Ic(é) = % [a (”151131) + Tels — CT(lj-BlvT(lj-Bl
ig) = % [Cngi)1”r(zj+)1 —q (”51131) — Tels]
(D = TR0 - g () - 1]

_ Tls(my; — my;) N Tyl

legn = ha ha [{(my, — myy) — h(myemy, — myymye)tq(vy) + Telg — 1]

_ Tls(myy —myq) n Tl

leon = ha ha [{(my; — myy) — h(myemy — myymye)tq(vy) + Tels — 1]

The nonlinear physical phenomenon is linearized by applying Newton's methodology

on t, and t,,, both are associated intermediately. Therefore, the equivalent nonlinear

electrical model consists of Gg({;) and Gg(fl)ﬂ (conductance) and the parallel current sources

Ig(fl) and 1. which are defined as:

gn+1
¢ — ag(v) e — dg(v)
ga av v:vgj) n+1 av 17:171(1]3_1
0 _ 6) (O)IN0)] 0 _ 6)) (C)NN )]
Iga =9 (Ua ) - Gga Va Ign+1 =4 (vn+1) - ng+1vn+1

Homogenous circuit in (j + 1)* Newton's iteration and (n + 1)** time domain are written
like,
D _ -~ 6)] D _ W 6)
Gdl - Gga + Gca Gdz - ng+1 + Gcn+1
6)
+ ICTl+1

) ) ) ) )
=181 1 =10,
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The dimension of equivalent circuits becomes Runge Kutta method of order 4. The voltage

controlled by the current i.g is controlled by vg. and vgg and is given by

. Ig VBE Upc
teE =0, (exp {NF. VT} —exp {NR. VT})

where Qj is charge density, N and Ny are forward and reverse current emission coefficients.

V- is termed as thermal voltage and is given by kT /q. Forward that iz = feg(Vgg,Vse ),
and apply Newton's methodology to voltages and current within the intervals.
Then icg(ne1yice(a) are given by

.(J+1) (J) @) U+1) 6)) (U+1)
LeE(na1) = lotn+1) T Iscne)VBems) T IBE(m+1)VBE(M+1) (8)

U+) _ 0)

i 0)) (J+1) 0)) (J+1) (9)

cE(@) = Yo(a) T 9rc(a)VBeca) T IBE(0)VBE ()

Parameters g,(jE)(n +1) g,g]g(a), ggc)(n +1) and géjc)(a) indicate the coefficients of the current
sources. These are invariably controlled by the wvgg. The parameters L(()’() n+1) and 181(31) are

referred as current sources. The results of every parameter are shown as follows:

0]
6)) Is VBE(n+1)
Ipc(n+1) = exp
Qsmn+1)-Nr-Vr Ng. Vp
6))
0 Is VBE(a)
Ipca) = exp
QB(a)-NF-VT Ng. Vp
0))
%) I UBc(n+1)
g ex
BE(n+1) — Qsn+1)- Ng-Vr Ng.Vp
6))
o) Is Vbc(a)
9BE(a) = exp
QB(a).NR.VT Ng. Vp

0] 6)) 0)) 0))
() Ig VBEm+1) Vecmn+1) VBcm+1) Vgc(n+1)
fotni) = 1-— expi———t+ | -1+ ——|exp{——-—=
Qpm+1) Ng.Vr Ng.Vr Ng.Vr Ng.Vr

0 ) ) )
1 v v Vg v
(]) S BE(a) BC(a) BC(a) BC(a)
= 1- exp +( -1+ expi—-
o) = QB(a)< NF.VT> NF.VT} ( Ng. VT> {NR.VT}
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Hence the computations of RK method of order 4, yield the exact solutions as well as how to

diminish or control the error. The error in interpolation can be expressed as

FO(E) = 2%x! « 0(x M),

n — oo

approximate values are: t > h. Figures 1 to 3 presents the comparison of exact values with

RK method of order 4, Heun, Midpoint and Taylors’s method with various h values.

Comparing exact and Runge-Kutta methods with h=0.25

45+

35+

25
0

¢+ Exact
Heun
= Midpoint
e (1K I
Taylor

05 1 15 2 25

Comparing exact and Runge-Kutta methods with h=0.35

Exact

Heun
— Midpoint
A5 ——RK ]
Taylor
4t
35F
3F
\‘
N
25 L L L L L .
0 05 1 15 2 25 3 35

Figure 1: Comparing exact values with RK method of order 4, Heun, Midpoint and
Taylors’s method when h = 0.25 and h = 0.35

Comparing exact and Runge-Kutta methods with h=0.45

+ Exact
Heun
Midpaint ||
p— R
Taylor

55

Comparing exact and Runge-Kutta methods with h=0.55

Exact
Heun
= Midpoint
pr—RK
Taylor

Figure 2: Comparing exact values with RK method of order 4, Heun, Midpoint and
Taylors’s method when h = 0.45 and h = 0.55
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Comparing exact and Runge-Kutta methods with h=0.65 Comparing exact and Runge-Kutta methods with h=0.75

+  Exact ¢ Exact
Heun
Midpoint 5

— I N

Heun
Midpoint H
“RK

. \'t.'\% 7 Taylor
AN

N 'm_»‘ ‘ 4 ‘xn..
o il %
A :
05 0 L
1 2 3 4 5 6 7 0 1 2 3 4 & B 7 8
X X

Figure 3: Comparing exact values with RK method of order 4, Heun, Midpoint and
Taylors’s method when h = 0.65 and h = 0.75

4 Conclusion

Equilibrium state and array interpretation (Butcher matrix) representation of RK
method of order 4 along with the convolution of past, intermediate and present voltages are
studied. Constant step size (h) is used until a testing procedure confirms that the
discontinuity occurs in the present integration interval. This step size function calculations
would take place at the end of the functional calculations, but before the dependent variables
were updated. The input parameters indicate the voltage coefficient which is controlled by
current sources and measures in a random periodic time. The output parameters provide
stable independent values and calculated from past voltage and current values.
Implementations of numerical integration for nonlinear capacitors are presented. Finally we
compared the exact values with RK method of order 4, Heun, Midpoint and Taylors’s method

with various h values.
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