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Abstract

A self-adjoint coupled system of second-order differential inclusions with nonlocal multi-point

boundary conditions is considered. An existence result is established when the set-valued maps

have nonconvex values.

Key words: differential inclusion, measurable selection, boundary value problem.

AMS classification: 34A60

1. Introduction

A basic fact in the theory of ordinary differential equations is that any linear

second-order differential equation may be written in the self-adjoint form (r(t)y′)′ =

q(t)y. This equation with boundary conditions of the form α1y(0) − α2y
′(0) =

0, β1y(T ) − β2y
′(T ) = 0 is known as the Sturm-Liouville problem. In the

set-valued framework differential inclusions of the form (r(t)y′)′ ∈ F (t, y) are called

Sturm-Liouville type differential inclusions without any particular choice for the

boundary conditions.

The present note is devoted to the following coupled system of Sturm-Liouville

differential inclusions (p1(t)x
′
1)
′ ∈ F1(t, x1, x2), a.e. t ∈ [a, b],

(p2(t)x
′
2)
′ ∈ F2(t, x1, x2), a.e. t ∈ [a, b],

(1)
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with nonlocal multi-point boundary conditions of the form x′1(a) = 0, x1(b) =
∑m

j=1 αjx2(ξj),

x′2(a) = 0, x2(b) =
∑n

k=1 βkx1(µk),
(2)

where F1(., ., .) : [a, b] × R2 → P(R), F2(., ., .) : [a, b] × R2 → P(R) are given

set-valued maps, a < ξ1 < ... < ξm < µ1 < ... < µn < b, αj, βk ∈ R+, j = 1,m,

k = 1, n and p1(.) : [a, b]→ (0,∞), p2(.) : [a, b]→ (0,∞) are continuous.

Our study is motivated by a recent paper [11], where sufficient conditions for

the existence and uniqueness of solutions for such type of problem are find in the

single-valued case; namely, the right-hand side in (1) is given by (single-valued)

mappings. All the results in [11] are proved by using several suitable theorems from

fixed point theory.

Our intention is to extend the study in [11] to the set-valued framework. The

approach we present here takes into account the case when the values of F1 and F2

are not convex; but these set-valued maps are assumed to be Lipschitz in the second

and third variable. In this case we establish an existence result for problem (1)–(2).

Our result use Filippov’s technique ([10]); more exactly, the existence of solutions is

obtained by starting from a pair of given ”quasi” solutions. In addition, the result

provides an estimate between the ”quasi” solutions and the solutions obtained.

Similar results for ”simple” Sturm-Liouville differential inclusions may be found

in the literature [2, 3, 4, 5, 6]. As far as we know the present paper is the first in

literature which contains an existence result of Filippov type for coupled systems of

Sturm-Liouville differential inclusions. We also mention that the technique presented

here may be seen at coupled system of fractional differential inclusions [7, 8, 9]. Even

if the method we use here is known in the theory of differential inclusions it is largely

ignored by the authors that are dealing with such problems in favor of fixed point

approaches, most probably, because it is much easier to handle the applications of

classical fixed point theorems.

The paper is organized as follows: in Section 2 we recall some preliminary results

that we need in the sequel and in Section 3 we prove our main results.

Journal of Computational Mathematica Page 125 of 133



2456-8686, 6(1), 2022: 124-133
https://doi.org/10.26524/cm126

2. Preliminaries

We set by I the interval [a, b]. We denote by C(I,R) the Banach space of all

continuous functions x(.) : I → R endowed with the norm |x(.)|C = supt∈I |x(t)| and

by L1(I,R) the Banach space of all integrable functions x(.) : I → R endowed with

the norm |x(.)|1 =
∫ b
a
|x(t)|dt.

The Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ R is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, where d∗(A,B) = sup{d(a,B); a ∈ A} and

d(x,B) = infy∈B d(x, y).

The next technical result is proved in [11].

Lemma 2.1 Let f1(.) : [a, b]→ R, f2(.) : [a, b]→ R be continuous mappings. Then

the solution of the linear system (p1(t)x
′
1)
′ = f1(t) t ∈ [a, b],

(p2(t)x
′
2)
′ = f2(t) t ∈ [a, b]

with boundary conditions (2) is given by

x1(t) =
∫ t
a
( 1
p1(s)

∫ s
a
f1(τ)dτ)ds+ 1

C
[−

∫ b
a
( 1
p1(s)

∫ s
a
f1(τ)dτ)ds+∑m

j=1 αj
∫ ξj
a

( 1
p2(s)

∫ s
a
f2(τ)dτ)ds−

∫ b
a
(
∑m

j=1 αj

p2(s)

∫ s
a
f2(τ)dτ)ds+

(
∑m

j=1 αj)(
∑n

k=1 βk
∫ µk
a

( 1
p1(s)

∫ s
a
f1(τ)dτ)ds)]

x2(t) =
∫ t
a
( 1
p2(s)

∫ s
a
f2(τ)dτ)ds+ 1

C
[−

∫ b
a
( 1
p2(s)

∫ s
a
f2(τ)dτ)ds+∑n

k=1 βk
∫ µk
a

( 1
p1(s)

∫ s
a
f1(τ)dτ)ds−

∫ b
a
(
∑n

k=1 βk
p1(s)

∫ s
a
f1(τ)dτ)ds+

(
∑n

k=1 βk)(
∑m

j=1 αj
∫ ξj
a

( 1
p2(s)

∫ s
a
f2(τ)dτ)ds)],

(3)

where C = 1− (
∑m

j=1 αj)(
∑n

k=1 βk) 6= 0.

Definition 2.2 The mappings x1(.), x2(.) ∈ C(I,R) are said to be solutions

of problem (1)–(2) if there exists f1(.), f2(.) ∈ L1(I,R) such that f1(t) ∈
F1(t, x1(t), x2(t)) a.e. (I), f2(t) ∈ F2(t, x1(t), x2(t)) a.e. (I) and x1(.) and x2(.) are

given by (3).
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In what follows χA(·) denotes the characteristic function of the set A ⊂ R.

Remark 2.3 Let us introduce the following notations

K1(t, τ) = (
∫ t
τ

1
p1(s)

ds)χ[a,t](τ)− 1
C

(
∫ b
τ

1
p1(s)

ds)+

1
C

∑m
j=1 αj

∑n
k=1 βk(

∫ µk
τ

1
p1(s)

ds)χ[a,µk](τ),

K2(t, τ) =
1

C

m∑
j=1

αj(

∫ ξj

τ

1

p2(s)
ds)χ[a,ξj ](τ)− 1

C

m∑
j=1

αj(

∫ b

τ

1

p2(s)
ds),

K3(t, τ) =
1

C

n∑
k=1

βk(

∫ µk

τ

1

p1(s)
ds)χ[a,µk](τ)− 1

C

n∑
k=1

βk(

∫ b

τ

1

p1(s)
ds),

K4(t, τ) = (
∫ t
τ

1
p2(s)

ds)χ[a,t](τ)− 1
C

(
∫ b
τ

1
p2(s)

ds)+

1
C

∑n
k=1 βk

∑m
j=1 αj(

∫ ξj
τ

1
p2(s)

ds)χ[a,ξj ](τ).

Then the solutions (x1(.), x2(.)) in Lemma 2.1 may be put as

x1(t) =
∫ b
a
K1(t, τ)f1(τ)dτ +

∫ b
a
K2(t, τ)f2(τ)dτ, t ∈ I

x2(t) =
∫ b
a
K3(t, τ)f1(τ)dτ +

∫ b
a
K4(t, τ)f2(τ)dτ, t ∈ I.

Moreover, if we define M1 := maxt∈I
1

|p1(s)| , M2 := maxt∈I
1

|p2(s)| , for any t, τ ∈ I we

have the following estimates

|K1(t, τ)| ≤M1(b− a)(1 +
1

|C|
) +

1

|C|

m∑
j=1

αj

n∑
k=1

βkM1(µk − a) =: k1,

|K2(t, τ)| ≤ 1

|C|

m∑
j=1

αjM2(ξj − a) +
1

|C|

m∑
j=1

αjM2(b− a) =: k2

|K3(t, τ)| ≤ 1

|C|

n∑
k=1

βkM1(µk − a) +
1

|C|

n∑
k=1

βkM1(b− a) =: k3

|K4(t, τ)| ≤M2(b− a)(1 +
1

|C|
) +

1

|C|

n∑
k=1

βk

m∑
j=1

αjM2(ξj − a) =: k4,
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Finally, in the proof of our main result we need the following classical selection result

for set-valued maps (e.g., [1]).

Lemma 2.4 Let Z be a separable Banach space, B its closed unit ball, A : I → P(Z)

is a set-valued map whose values are nonempty closed and b : I → Z, c : I → R+ are

two measurable functions. If

A(t) ∩ (b(t) + c(t)B) 6= ∅ a.e. (I),

then the set-valued map t→ A(t) ∩ (b(t) + c(t)B) admits a measurable selection.

3. Main result

Our results are proved under the following hypotheses.

Hypothesis i) F1 : I × R2 → P(R) and F2 : I × R2 → P(R) have nonempty

closed values and the set-valued maps F1(., y1, y2), F2(., y1, y2) are measurable for any

y1, y2 ∈ R.

ii) There exist l1(.), l2(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F1(t, ., .)

is l1(t)-Lipschitz and F2(t, ., .) is l2(t)-Lipschitz; i.e.,

dH(F1(t, y1, z1), F1(t, y2, z2)) ≤ l1(t)(|y1 − y2|+ |z1 − z2|) ∀ y1, y2, z1, z2 ∈ R.

dH(F2(t, y1, z1), F2(t, y2, z2)) ≤ l2(t)(|y1 − y2|+ |z1 − z2|) ∀ y1, y2, z1, z2 ∈ R.

In what follows l(t) = k1l1(t) + k2l2(t) + k3l1(t) + k4l2(t), t ∈ I.

Theorem 3.1 Assume that C 6= 0, Hypothesis is satisfied and |l(.)|1 < 1.

(y1(.), y2(.)) ∈ C(I,R)2 are considered such that there exist q1(.), q2(.) ∈ L1(I,R)

with d((p1(t)y1(t)
′)′, F1(t, y1(t), y2(t))) ≤ q1(t) a.e. t ∈ I,

d((p2(t)y2(t)
′)′, F2(t, y1(t), y2(t))) ≤ q2(t) a.e. t ∈ I, y′1(a) = y′2(a) = 0,

y1(b) =
∑m

j=1 αjy2(ξj), y2(b) =
∑n

k=1 βky1(µk).

Then there exists (x1(.), x2(.)) ∈ C(I,R)2 a solution of problem (1)–(2) satisfying
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for all t ∈ I

|x1(t)− y1(t)|+ |x2(t)− y2(t)| ≤
(k1 + k3)|q1(.)|1 + (k2 + k4)|q2(.)|1

1− |l(.)|1
. (4)

Proof: From the assumptions of the theorem

F1(t, y1(t), y2(t)) ∩ {(p1(t)y1(t)′)′ + q1(t)[−1, 1]} 6= ∅ a.e. (I),

F2(t, y1(t), y2(t)) ∩ {(p2(t)y2(t)′)′ + q2(t)[−1, 1]} 6= ∅ a.e. (I).

By Lemma 2.4 there exist mesurable selections f 1
1 (t) ∈ F1(t, y1(t), y2(t)), f

1
2 (t) ∈

F2(t, y1(t), y2(t)) a.e. (I) such that

|f 1
1 (t)− (p1(t)y1(t)

′)′| ≤ q1(t), |f 1
2 (t)− (p2(t)y2(t)

′)′| ≤ q2(t) a.e. (I).

Define

x11(t) =
∫ b
a
K1(t, τ)f 1

1 (τ)dτ +
∫ b
a
K2(t, τ)f 1

2 (τ)dτ, t ∈ I

x12(t) =
∫ b
a
K3(t, τ)f 1

1 (τ)dτ +
∫ b
a
K4(t, τ)f 1

2 (τ)dτ, t ∈ I.

We have the estimates

|x11(t)− y1(t)| ≤ k1|q1(.)|1 + k2|q2(.)|1 ∀ t ∈ I,

|x12(t)− y2(t)| ≤ k3|q1(.)|1 + k4|q2(.)|1 ∀ t ∈ I,

and so,

|x11(t)− y1(t)|+ |x12(t)− y2(t)| ≤ (k1 + k3)|q1(.)|1 + (k2 + k4)|q2(.)|1 =: k.

In the next part of the proof we construct, by induction, the sequences

x1n(.), x2n(.) ∈ C(I,R) and f 1
n(.), f 2

n(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn1 (t) =
∫ b
a
K1(t, τ)fn1 (τ)dτ +

∫ b
a
K2(t, τ)fn2 (τ)dτ, t ∈ I

xn2 (t) =
∫ b
a
K3(t, τ)fn1 (τ)dτ +

∫ b
a
K4(t, τ)fn2 (τ)dτ, t ∈ I.

(5)
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fn1 (t) ∈ F1(t, x
n−1
1 (t), xn−12 (t)), fn2 (t) ∈ F2(t, x

n−1
1 (t), xn−12 (t)) a.e. (I), (6)

|fn+1
1 (t)− fn1 (t)| ≤ l1(t)(|xn1 (t)− xn−11 (t)|+ |xn2 (t)− xn−12 (t)|) a.e. (I),

|fn+1
2 (t)− fn2 (t)| ≤ l2(t)(|xn1 (t)− xn−11 (t)|+ |xn2 (t)− xn−12 (t)|) a.e. (I).

(7)

We point out that from (5)–(7) it follows

|xn+1
1 (t)− xn1 (t)|+ |xn+1

2 (t)− xn2 (t)| ≤ k(|l(.)|1)n a.e. (I) ∀n ∈ N. (8)

The case n = 0 is already proved. Now, we assume (8) valid for n− 1. For almost

all t ∈ I,

|xn+1
1 (t)− xn1 (t)| ≤

∫ b
a
|K1(t, τ)|.|fn+1

1 (τ)− fn1 (τ)|dτ +
∫ b
a
|K2(t, τ)|.|fn+1

2 (τ)

−fn2 (τ)|dτ ≤ k1
∫ b
a
|fn+1

1 (τ)− fn1 (τ)|dτ + k2
∫ b
a
|fn+1

2 (τ)− fn2 (τ)|dτ ≤

k1
∫ b
a
l1(τ)(|xn1 (τ)− xn−11 (τ)|+ |xn2 (τ)− xn−12 (τ)|)dτ + k2

∫ b
a
l2(τ)(|xn1 (τ)−

xn−11 (τ)|+ |xn2 (τ)− xn−12 (τ)|)dτ ≤ k(|l(.)|1)n−1(k1
∫ b
a
l1(τ)dτ + k2

∫ b
a
l2(τ)dτ).

In a similar way, we obtain for almost all t ∈ I,

|xn+1
2 (t)− xn2 (t)| ≤ k(|l(.)|1)n−1(k3

∫ b

a

l1(τ)dτ + k4

∫ b

a

l2(τ)dτ).

Therefore, (8) is true for n.

Inequality (8) shows that the sequences {xn1 (.)}, {xn2 (.)} are Cauchy in the space

C(I,R). Let x1(.) ∈ C(I,R) and x2(.) ∈ C(I,R) be their limits in C(I,R). Also,

from (7) we deduce that, for almost all t ∈ I, the sequences {fn1 (t)}, {fn2 (t)} are

Cauchy in R. We consider f1(.), f2(.) their pointwise limit.

At the same time, inequality (8) and Hypothesis give

|xn1 (t)− y1(t)|+ |xn2 (t)− y2(t)| ≤ |x11(t)− y1(t)|+ |x12(t)− y2(t)|+∑n−1
i=1 (|xi+1

1 (t)− xi1(t)|+ |xi+1
2 (t)− xi2(t)|) ≤ k +

∑n
i=1 k(|l(.)|1)i ≤ k

1−|l(.)|1 .
(9)
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and

|fn1 (t)− (p1(t)y1(t)
′)′|+ |fn2 (t)− (p2(t)y2(t)

′)′| ≤ |f 1
1 (t)− (p1(t)y1(t)

′)′|+

|f 1
2 (t)− (p2(t)y2(t)

′)′|+
∑n−1

i=1 (|f i+1
1 (t)− f i1(t)|+ |f i+1

2 (t)− f i2(t)|) ≤

|f 1
1 (t)− (p1(t)y1(t)

′)′|+ |f 1
2 (t)− (p2(t)y2(t)

′)′|+
∑n−1

i=1 (l1(t) + l2(t))(|xi1(t)

−xi−11 (t)|+ |xi2(t)− xi−12 (t)|) ≤ q1(t) + q2(t) + (l1(t) + l2(t))
k

1−|l(.)|1

for almost all t ∈ I.

This means that the sequences fn1 (.), fn2 (.) are integrably bounded and therefore,

their limits f1(.), f2(.) belong to L1(I,R).

The next step of the proof contains the construction in (5)–(7). By induction,

we suppose that for M ≥ 1, xm1 (.), xm2 (.) ∈ C(I,R) and fm1 (.), fm2 (.) ∈ L1(I,R),

m = 1, 2, ...M with (5) and (7) for m = 1, 2, ...M and (6) for m = 1, 2, ...M − 1 are

constructed.

Using again Hypothesis

F1(t, x
M
1 (t), xM2 (t)) ∩ {fM1 (t) + (l1(t)|xM1 (t)− xM−11 (t)|+ l1(t)|xM2 (t)−

xM−12 (t)|)[−1, 1]} 6= ∅,

F2(t, x
M
1 (t), xM2 (t)) ∩ {fM2 (t) + (l2(t)|xM1 (t)− xM−11 (t)|+ l2(t)|xM2 (t)−

xM−12 (t)|)[−1, 1]} 6= ∅

for almost all t ∈ I.

By Lemma 2.4 we obtain the existence of measurable selections fM+1
1 (.) of

F1(., x
1
M(.), x2M(.)) and fM+1

2 (.) of F2(., x
1
M(.), x2M(.)) such that

|fM+1
1 (t)− fM1 (t)| ≤ l1(t)(|xM1 (t)− xM−11 (t)|+ |xM2 (t)− xM−12 (t)|) a.e. (I),

|fM+1
2 (t)− fM2 (t)| ≤ l2(t)(|xM1 (t)− xM−11 (t)|+ |xM2 (t)− xM−12 (t)|) a.e. (I).

We define xM+1
1 (.), xM+1

2 (.) as in (5) with n = M + 1.
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Finally, it remains to take n→∞ in (5) and (9) in order to finish the proof.

Corollary 3.2 Assume that C 6= 0, Hypothesis is satisfied, |l(.)|1 < 1,

d(0, F1(t, 0, 0)) ≤ l1(t) a.e. t ∈ I and d(0, F2(t, 0, 0)) ≤ l2(t) a.e. t ∈ I.

Then there exists (x1(.), x2(.)) ∈ C(I,R)2 a solution of problem (1)–(2) satisfying

for all t ∈ I
|x1(t)|+ |x2(t)| ≤

(k1 + k3)|l1(.)|1 + (k2 + k4)|l2(.)|1
1− |l(.)|1

.

Proof: We apply Theorem 3.1 with y1(.) = y2(.) = 0, q1(.) = l1(.) and q2(.) = l2(.).

Remark 3.3 If in (1) F1 and F2 are single-valued maps, Corollary 3.2 provides a

generalization to the set-valued framework of Theorem 3 in [11].
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