On Fuzzy Regular Volterra Spaces

G. Thangaraj1*, S. Soundara Rajan2**

1 Department of Mathematics, Thiruvalluvar University, Vellore-632115, Tamil Nadu, INDIA.
2 Department of Mathematics, Islamiah College, Vaniyambadi-635752, Tamil Nadu, INDIA.

Abstract

The aim of this paper is to introduce the concepts of regular G_δ-sets, regular F_σ-sets and regular Volterra spaces in fuzzy setting are introduced and studied. Several characterizations of fuzzy regular Volterra spaces in terms of fuzzy regular F_σ-sets, fuzzy first category sets, fuzzy residual sets and fuzzy σ-nowhere dense sets are also established in this paper.

Key words: Fuzzy open set, fuzzy dense set, fuzzy nowhere dense set, fuzzy σ-nowhere dense set, fuzzy G_δ-set, fuzzy F_σ-set, fuzzy first category set, fuzzy residual set, fuzzy β-open set and fuzzy Volterra spaces.

AMS classification: 54 A 40, 03 E 72

1. Introduction

In 1970, J. Mack [6] introduced the concepts of regular G_δ-sets and regular F_σ-sets in classical topology. K.K. Azad [1] introduced fuzzy regular open and fuzzy regular closed sets in 1981. The concepts of regular G_δ-sets and regular F_σ-sets in fuzzy setting are introduced and studied in this paper. By using fuzzy regular G_δ-sets, the concept of fuzzy regular Volterra spaces is introduced in this paper. Several characterizations of fuzzy regular Volterra spaces in terms of fuzzy regular F_σ-sets, fuzzy first category sets, fuzzy residual sets and fuzzy σ-nowhere dense sets are also established in this paper.

*g.thangaraj@rediffmail.com, **soundar.rajan2002@yahoo.com
2. Preliminaries

In 1965, L.A. Zadeh [10] introduced the concept of fuzzy set λ on a base set X as a function from X into the unit interval $I = [0, 1]$. This function is also called a membership function. A membership function is a generalization of a characteristic function.

Definition 2.1 [5] Let λ and μ be fuzzy sets in X. Then for all $x \in X$,

1. $\lambda = \mu \iff \lambda(x) = \mu(x)$,
2. $\lambda \leq \mu \iff \lambda(x) \leq \mu(x)$,
3. $\psi = \lambda \lor \mu \iff \psi(x) = \max\{\lambda(x), \mu(x)\}$,
4. $\delta = \lambda \land \mu \iff \delta(x) = \min\{\lambda(x), \mu(x)\}$,
5. $\eta = \lambda^c \iff \eta(x) = 1 - \lambda(x)$.

For a family $\{\lambda_i/i \in I\}$ of fuzzy sets in X, the union $\psi = \lor_i \lambda_i$ and intersection $\delta = \land_i \lambda_i$ are defined by $\psi(x) = \sup_i \{\lambda_i(x), x \in X\}$, and $\delta(x) = \inf_i \{\lambda_i(x), x \in X\}$.

The fuzzy set 0_X is defined as $0_X(x) = 0$, for all $x \in X$ and the fuzzy set 1_X defined as $1_X(x) = 1$, for all $x \in X$.

Definition 2.2 [5] A fuzzy topology is a family \mathcal{T} of fuzzy sets in X which satisfies the following conditions:

1. $\Phi, X \in \mathcal{T}$,
2. If $A, B \in \mathcal{T}$, then $A \cap B \in \mathcal{T}$,
3. If $A_i \in \mathcal{T}$, for each $i \in I$, then $\bigcup_{i \in I} A_i \in \mathcal{T}$.

\mathcal{T} is called a fuzzy topology for X and the pair (X, \mathcal{T}) is a fuzzy topological space or fts in short. Every member of \mathcal{T} is called a \mathcal{T}-open fuzzy set. A fuzzy set is \mathcal{T}-closed if and only if its complement is \mathcal{T}-open. When no confusion is likely to arise, we shall call a \mathcal{T}-open (\mathcal{T}-closed) fuzzy set simply an open (closed) fuzzy set.

Lemma 2.3 [1] For a family $\mathcal{A} = \{\lambda_\alpha\}$ of fuzzy sets of a fuzzy space X. Then, $\lor cl \lambda_\alpha \leq cl(\lor \lambda_\alpha)$. In case \mathcal{A} is a finite set, $\lor cl \lambda_\alpha = cl(\lor \lambda_\alpha)$. Also $\lor int \lambda_\alpha \leq int(\lor \lambda_\alpha)$.

Definition 2.4 [2] A fuzzy set λ in a fuzzy topological space (X, \mathcal{T}) is called a fuzzy F_α-set in (X, \mathcal{T}) if $\lambda = \lor_{i=1}^\infty (\lambda_i)$, where $1 - \lambda_i \in \mathcal{T}$ for $i \in I$.
Definition 2.5 [2] A fuzzy set \(\lambda \) in a fuzzy topological space \((X, T)\) is called a fuzzy \(G_\delta \)-set in \((X, T)\) if \(\lambda = \bigwedge_{i=1}^{\infty}(\lambda_i) \), where \(\lambda_i \in T \) for \(i \in I \).

Definition 2.6 [7] A fuzzy set \(\lambda \) in a fuzzy topological space \((X, T)\) is called a fuzzy dense set if there exists no fuzzy closed set \(\mu \) in \((X, T)\) such that \(\lambda < \mu < 1 \).

Definition 2.7 [7] Let \((X, T)\) be a fuzzy topological space. A fuzzy set \(\lambda \) in \((X, T)\) is called a fuzzy nowhere dense set if there exists no non-zero fuzzy open set \(\mu \) in \((X, T)\) such that \(\mu < \text{cl}(\lambda) \). That is, \(\text{int} \text{cl}(\lambda) = 0 \).

Definition 2.8 [7] Let \((X, T)\) be a fuzzy topological space. A fuzzy set \(\lambda \) in \((X, T)\) is called a fuzzy first category set if \(\lambda = \bigvee_{i=1}^{\infty}(\lambda_i) \), where \((\lambda_i)\)'s are fuzzy nowhere dense sets in \((X, T)\). Any other fuzzy set in \((X, T)\) is said to be of fuzzy second category.

Definition 2.9 [7] Let \(\lambda \) be a fuzzy first category set in a fuzzy topological space \((X, T)\). Then \(1 - \lambda \) is called a fuzzy residual set in \((X, T)\).

Definition 2.10 [8] Let \((X, T)\) be a fuzzy topological space. A fuzzy set \(\lambda \) in \((X, T)\) is called a fuzzy \(\sigma \)-nowhere dense set if \(\lambda \) is a fuzzy \(F_\sigma \)-set in \((X, T)\) such that \(\text{int} \text{cl}(\lambda) = 0 \).

Definition 2.11 A fuzzy set \(\lambda \) in a fuzzy topological space \(X \) is called

1. fuzzy pre-open if \(\lambda \leq \text{int cl}(\lambda) \) and fuzzy pre-closed if \(\text{cl int}(\lambda) \leq \lambda \).
2. fuzzy semi-open if \(\lambda \leq \text{cl int}(\lambda) \) and fuzzy semi-closed if \(\text{int cl}(\lambda) \leq \lambda \).
3. fuzzy \(\beta \)-open if \(\lambda \leq \text{cl int cl}(\lambda) \) and fuzzy \(\beta \)-closed if \(\text{int cl int}(\lambda) \leq \lambda \).
4. fuzzy regular open if \(\text{int cl}(\lambda) = \lambda \) and fuzzy regular closed if \(\text{cl int}(\lambda) = \lambda \).

Definition 2.12 [9] A fuzzy topological space \((X, T)\) is called a fuzzy Volterra space if \(\text{cl}(\bigwedge_{i=1}^{\infty}(\lambda_i)) = 1 \), where \((\lambda_i)\)'s are fuzzy dense and fuzzy \(G_\delta \)-sets in \((X, T)\).

Theorem 2.13 [1] In a fuzzy topological space \((X, T)\),

(a). The closure of a fuzzy open set is a fuzzy regular closed set
(b). The interior of a fuzzy closed set is a fuzzy regular open set.

3. Fuzzy regular \(G_\delta \)-sets

Definition 3.1 A fuzzy set \(\lambda \) in a fuzzy topological space \((X, T)\) is called a fuzzy regular \(G_\delta \)-set if \(\lambda = \bigwedge_{i=1}^{\infty}(\text{int}(\lambda_i)) \), where \(1 - \lambda_i \in T \).
Definition 3.2 A fuzzy set \(\mu \) in a fuzzy topological space \((X, T)\) is called a fuzzy regular \(F_\sigma \)-set if \(\mu = \vee_{i=1}^{\infty} (cl(\mu_i)) \), where \(\mu_i \in T \).

Proposition 3.3 If \(\lambda \) is a fuzzy regular \(G_\delta \)-set in a fuzzy topological space \((X, T)\) if and only if \(1 - \lambda \) is a fuzzy regular \(F_\sigma \)-set in \((X, T)\).

Proof: Let \(\lambda \) be a fuzzy regular \(G_\delta \)-set in \((X, T)\). Then \(\lambda = \bigwedge_{i=1}^{\infty} (int(\lambda_i)) \), where \(1 - \lambda_i \in T \). Now \(1 - \lambda = 1 - \bigwedge_{i=1}^{\infty} (int(\lambda_i)) = \bigvee_{i=1}^{\infty} (1 - int(\lambda_i)) = \bigvee_{i=1}^{\infty} (cl(1 - \lambda_i)). \) Let \(\mu_i = 1 - \lambda_i \). Then \(\mu_i \in T \). Hence \(1 - \lambda = \bigvee_{i=1}^{\infty} (cl(\mu_i)), \mu_i \in T \). Therefore \(1 - \lambda \) is a fuzzy regular \(F_\sigma \)-set in \((X, T)\).

Conversely, let \(\lambda \) be a fuzzy regular \(F_\sigma \)-set in \((X, T)\). Then \(\lambda = \bigvee_{i=1}^{\infty} (cl(\mu_i)), \mu_i \in T \). Now \(1 - \lambda = 1 - \bigvee_{i=1}^{\infty} (cl(\mu_i)) = \bigwedge_{i=1}^{\infty} (1 - cl(\mu_i)) = \bigwedge_{i=1}^{\infty} (int(1 - \mu_i)). \) Let \(1 - \mu_i = \lambda_i \). Then implies that \(\mu_i = 1 - \lambda_i \) and \(1 - \lambda_i \in T \). Hence \(1 - \lambda = \bigwedge_{i=1}^{\infty} (int(\lambda_i)) \), where \(1 - \lambda_i \in T \). Therefore \(1 - \lambda \) is a fuzzy regular \(G_\delta \)-set in \((X, T)\).

Proposition 3.4 Let \((X, T)\) be a fuzzy topological space.

(1). If \(\lambda \) is a fuzzy regular \(G_\delta \)-set in \((X, T)\), then \(\lambda = \bigwedge_{i=1}^{\infty} (\delta_i) \), where \((\delta_i)'s \) are fuzzy regular open sets in \((X, T)\).

(2). If \(\lambda \) is a fuzzy regular \(F_\sigma \)-set in \((X, T)\), then \(\lambda = \bigvee_{i=1}^{\infty} (\mu_i) \), where \((\mu_i)'s \) are fuzzy regular closed sets in \((X, T)\).

Proof: (1). Let \(\lambda \) be a fuzzy regular \(G_\delta \)-set in \((X, T)\). Then \(\lambda = \bigwedge_{i=1}^{\infty} (int(\lambda_i)) \), where \(1 - \lambda_i \in T \). Now \(1 - \lambda_i \in T \) implies that \(\lambda_i \) is a fuzzy closed set in \((X, T)\). By theorem 2.13, \(int(\lambda_i) \) is a fuzzy regular open set in \((X, T)\). Let \(\delta_i = int(\lambda_i) \). Then \(\lambda = \bigwedge_{i=1}^{\infty} (\delta_i) \), where \((\delta_i)'s \) are fuzzy regular open sets in \((X, T)\).

(2). Let \(\lambda \) be a fuzzy regular \(F_\sigma \)-set in \((X, T)\). Then \(\lambda = \bigvee_{i=1}^{\infty} (cl(\mu_i)) \), where \(\mu_i \in T \). Now \(\mu_i \in T \) implies that \(cl(\mu_i) \) is a fuzzy regular closed set in \((X, T)\). Let \(\eta_i = cl(\mu_i) \). Then \(\lambda = \bigvee_{i=1}^{\infty} (\eta_i) \), where \((\eta_i)'s \) are fuzzy regular closed sets in \((X, T)\).

Proposition 3.5 If \(\lambda \) is a fuzzy regular \(G_\delta \)-set in a fuzzy topological space \((X, T)\), then \(\lambda \) is a fuzzy \(G_\delta \)-set in \((X, T)\).

Proof: Let \(\lambda \) be a fuzzy regular \(G_\delta \)-set in \((X, T)\). Then by proposition 3.4, \(\lambda = \bigwedge_{i=1}^{\infty} (\delta_i) \), where \((\delta_i)'s \) are fuzzy regular open sets in \((X, T)\). Since every fuzzy regular
open set is a fuzzy open set in \((X, T)\), \((\delta_i)\)'s are fuzzy open sets in \((X, T)\). Hence \(\lambda = \bigwedge_{i=1}^{\infty}(\delta_i)\), where \(\delta_i \in T\). Therefore \(\lambda\) is a fuzzy \(G_\delta\)-set in \((X, T)\).

Proposition 3.6 If \(\lambda\) is a fuzzy regular \(F_\sigma\)-set in a fuzzy topological space \((X, T)\), then \(\lambda\) is a fuzzy \(F_\sigma\)-set in \((X, T)\).

Proof: Let \(\lambda\) be a fuzzy regular \(F_\sigma\)-set in \((X, T)\). Then by proposition 3.4 \(\lambda = \bigvee_{i=1}^{\infty}(\eta_i)\), where \((\eta_i)\)'s are fuzzy regular closed sets in \((X, T)\). Since every fuzzy regular closed set is a fuzzy closed set in \((X, T)\), \((\eta_i)\)'s are fuzzy closed sets in \((X, T)\). Hence \(\lambda = \bigvee_{i=1}^{\infty}(\eta_i)\), where \(1 - \eta_i \in T\). Therefore \(\lambda\) is a fuzzy \(F_\sigma\)-set in \((X, T)\).

Proposition 3.7 If \(cl(\bigwedge_{i=1}^{\infty}int(\lambda_i)) = 1\), where \((\lambda_i)\)'s are fuzzy closed sets in a fuzzy topological space \((X, T)\), then \((\lambda_i)\)'s are fuzzy \(\beta\)-open sets in \((X, T)\).

Proof: Suppose that \(cl(\bigwedge_{i=1}^{\infty}int(\lambda_i)) = 1\), where \((\lambda_i)\)'s are fuzzy closed sets in \((X, T)\). But \(cl(\bigwedge_{i=1}^{\infty}int(\lambda_i)) \leq \bigwedge_{i=1}^{\infty}clint(\lambda_i)\). Then, \(1 \leq \bigwedge_{i=1}^{\infty}clint(\lambda_i)\). That is, \(\bigwedge_{i=1}^{\infty}clint(\lambda_i) = 1\). This implies that \(clint(\lambda_i) = 1\), \(\ldots\), (1). Since \((\lambda_i)\)'s are fuzzy closed sets in \((X, T)\), \(cl(\lambda_i) = \lambda_i\). Then \(clintcl(\lambda_i) = 1\). From (1), \(\lambda_i \leq clintcl(\lambda_i)\). Therefore, \((\lambda_i)\)'s are fuzzy \(\beta\)-open sets in \((X, T)\).

Proposition 3.8 If a fuzzy regular \(G_\delta\)-set \(\lambda\) is a fuzzy dense set in a fuzzy topological space \((X, T)\), then \(\lambda = \bigwedge_{i=1}^{\infty}int(\lambda_i)\), where \((\lambda_i)\)'s are fuzzy \(\beta\)-open sets in \((X, T)\).

Proof: Let \(\lambda\) be a fuzzy regular \(G_\delta\)-set in \((X, T)\) such that \(cl(\lambda) = 1\). Then \(\lambda = \bigwedge_{i=1}^{\infty}int(\lambda_i)\), where \((\lambda_i)\)'s are fuzzy closed sets in \((X, T)\) and \(cl[\bigwedge_{i=1}^{\infty}int(\lambda_i)] = cl(\lambda) = 1\). Then, by proposition 3.7 \((\lambda_i)\)'s are fuzzy \(\beta\)-open sets in \((X, T)\). Therefore, \(\lambda = \bigwedge_{i=1}^{\infty}int(\lambda_i)\), where \((\lambda_i)\)'s are fuzzy \(\beta\)-open sets in \((X, T)\).

Proposition 3.9 If \(int(\mu) = 0\), where \(\mu\) is a fuzzy regular \(F_\sigma\)-set in a fuzzy topological space \((X, T)\), then \(\mu = \bigvee_{i=1}^{\infty}cl(\lambda_i)\), where \((\lambda_i)\)'s are fuzzy \(\beta\)-closed sets in \((X, T)\).

Proof: Let \(\mu\) be a fuzzy regular \(F_\sigma\)-set in \((X, T)\) such that \(int(\mu) = 0\). Then, by proposition 3.3, \(1 - \mu\) is a fuzzy regular \(G_\delta\)-set in \((X, T)\) and \(cl(1 - \mu) = 1 - int(\mu) = 1 - 0 = 1\). Now, by proposition 3.8 \(1 - \mu = \bigwedge_{i=1}^{\infty}int(\mu_i)\), where \((\mu_i)\)'s are fuzzy \(\beta\)-open sets in \((X, T)\). Hence \(\mu = 1 - \bigwedge_{i=1}^{\infty}int(\mu_i) = \bigvee_{i=1}^{\infty}(1 - int(\mu_i)) = \)

*thangaraj@g.thangaraj@rediffmail.com, soundar.rajansoundar@rediffmail.com, **sandar.rajansoundar@rediffmail.com*
\text{Since } (\mu_i)\text{'s are fuzzy } \beta\text{-open sets, } (1 - \mu_i)\text{'s are fuzzy } \beta\text{-closed sets in } (X, T). \text{ Let } \lambda_i = 1 - \mu_i. \text{ Therefore, } \mu = \bigvee_{i=1}^{\infty} cl(\lambda_i), \text{ where } (\lambda_i)\text{'s are fuzzy } \beta\text{-closed sets in } (X, T).$

\section{Fuzzy regular Volterra spaces}

\textbf{Definition 4.1} A fuzzy topological space \((X, T)\) is called a fuzzy regular Volterra space if \(\bigwedge_{i=1}^{N} (\lambda_i) = 1\), where \((\lambda_i)\)’s are fuzzy dense and fuzzy regular \(G_\delta\)-sets in \((X, T)\).

\textbf{Proposition 4.2} If \(int\left(\bigvee_{i=1}^{N} (\mu_i) \right) = 0\) where \((\mu_i)\)’s are fuzzy regular \(F_\sigma\)-sets with \(int(\mu_i) = 0\) in a fuzzy topological space \((X, T)\), then \((X, T)\) is a fuzzy regular Volterra space.

\textbf{Proof:} Suppose that \(int\left(\bigvee_{i=1}^{N} (\mu_i) \right) = 0\), where \((\mu_i)\)’s are fuzzy regular \(F_\sigma\)-sets with \(int(\mu_i) = 0\). Now \(1 - int\left(\bigvee_{i=1}^{N} (\mu_i) \right) = 1\). Then, \(cl\left(1 - \bigvee_{i=1}^{N} (\mu_i)\right) = 1\). This implies that \(cl\left(\bigwedge_{i=1}^{N} (1 - \mu_i) \right) = 1\). Since \((\mu_i)\)’s are fuzzy regular \(F_\sigma\)-sets in \((X, T)\), by proposition 3.3, \((1 - \mu_i)\)’s are fuzzy regular \(G_\delta\)-sets in \((X, T)\). Also, \(int(\mu_i) = 0\) implies that \(1 - int(\mu_i) = 1\). Then, \(cl(1 - \mu_i) = 1\). Let \(\lambda_i = 1 - \mu_i\). Then \((\lambda_i)\)’s are fuzzy dense and fuzzy regular \(G_\delta\)-sets in \((X, T)\). Hence, \(cl\left(\bigwedge_{i=1}^{N} (\lambda_i) \right) = 1\), where \((\lambda_i)\)’s are fuzzy dense and fuzzy regular \(G_\delta\)-sets in \((X, T)\). Therefore \((X, T)\) is a fuzzy regular Volterra space.

\textbf{Remark:} In view of the propositions 3.9 and 4.2 one will have the following result: “If \(int\left(\bigvee_{i=1}^{N} (\eta_i) \right) = 0\), where \((\eta_i)\)’s are fuzzy \(\beta\)-closed sets in a fuzzy topological space \((X, T)\), then \((X, T)\) is a fuzzy regular Volterra space”.

\textbf{Proposition 4.3} If a fuzzy topological space \((X, T)\) is a fuzzy Volterra space, then \((X, T)\) is a fuzzy regular Volterra space.

\textbf{Proof:} Let \((X, T)\) be a fuzzy Volterra space. Let \(\lambda = cl\left(\bigwedge_{i=1}^{N} (\lambda_i) \right) \ldots\ldots(1)\), where \((\lambda_i)\)’s are fuzzy dense and fuzzy regular \(G_\delta\)-sets in \((X, T)\). By proposition 3.5, the fuzzy regular \(G_\delta\)-sets \((\lambda_i)\)’s are fuzzy \(G_\delta\)-sets in \((X, T)\). Since \((X, T)\) is a fuzzy Volterra space, \(cl\left(\bigwedge_{i=1}^{N} (\lambda_i) \right) = 1\). \ldots\ldots(2)\), where \((\lambda_i)\)’s are fuzzy dense and fuzzy \(G_\delta\)-sets in \((X, T)\). Hence, from (1) and (2), \(\lambda = 1\). Therefore \((X, T)\) is a fuzzy regular Volterra space.

\textbf{Proposition 4.4} If a fuzzy topological space \((X, T)\) is a fuzzy regular Volterra space, then \(int\left(\bigvee_{i=1}^{N} (\mu_i) \right) = 0\), where \((\mu_i)\)’s are fuzzy \(\sigma\)-nowhere dense sets in \((X, T)\).
Proof: Let \((X, T)\) be a fuzzy regular Volterra space. Then \(cl(\bigwedge_{i=1}^{N}(\lambda_i)) = 1\), where \((\lambda_i)'s\) are fuzzy dense and fuzzy regular \(G_\delta\)-sets in \((X, T)\). Now \(1 - cl(\bigwedge_{i=1}^{N}(\lambda_i)) = 0\) implies that \(int(\bigvee_{i=1}^{N}(1 - \lambda_i)) = 0\). Since \((\lambda_i)'s\) are fuzzy regular \(G_\delta\)-sets, by proposition 3.3, \((1 - \lambda_i)'s\) are fuzzy regular \(F_\sigma\)-sets in \((X, T)\). By proposition 3.6, \((1 - \lambda_i)'s\) are fuzzy \(F_\sigma\)-sets in \((X, T)\). Also, \(cl(\lambda_i) = 1\) implies that \(1 - cl(\lambda_i) = 0\) and hence \(int(1 - \lambda_i) = 0\). Let \(\mu_i = 1 - \lambda_i\). Then \((\mu_i)'s\) are fuzzy \(F_\sigma\)-sets with \(int(\mu_i) = 0\). Then, by the definition of fuzzy \(\sigma\)-nowhere dense sets, \((\mu_i)'s\) are fuzzy \(\sigma\)-nowhere dense sets in \((X, T)\). Hence \(int(\bigvee_{i=1}^{N}(\mu_i)) = 0\), where \((\mu_i)'s\) are fuzzy \(\sigma\)-nowhere dense sets in \((X, T)\).

Proposition 4.5 If \(int(\lambda) = 0\) for a fuzzy regular \(F_\sigma\)-set \(\lambda\) in a fuzzy topological space \((X, T)\), then \(\lambda\) is a fuzzy first category set in \((X, T)\).

Proof: Let \(\lambda\) be a fuzzy regular \(F_\sigma\)-set in \((X, T)\). Then \(\lambda = \bigvee_{i=1}^{\infty}(cl(\mu_i))\), where \(\mu_i \in T\). Now \(int(\lambda) = 0\) implies that \(int(\bigvee_{i=1}^{\infty}(cl(\mu_i))) = 0\). But \(\bigvee_{i=1}^{\infty}(int(cl(\mu_i))) \leq int(\bigvee_{i=1}^{\infty}(cl(\mu_i))) = 0\). Then \(\bigvee_{i=1}^{\infty}(int(cl(\mu_i))) = 0\). This implies that \(int(cl(\mu_i)) = 0\). Hence \(\mu_i\) is a fuzzy nowhere dense set in \((X, T)\). Also \(int(cl(\mu_i)) = int(cl(\mu_i)) = 0\) implies that \(cl(\mu_i)\) is a fuzzy nowhere dense set in \((X, T)\). Hence \(\lambda = \bigvee_{i=1}^{\infty}(cl(\mu_i))\), where \((cl(\mu_i))'s\) are fuzzy nowhere dense sets in \((X, T)\). Therefore \(\lambda\) is a fuzzy first category set in \((X, T)\).

Remark: In view of the propositions 3.9 and 4.5, one will have the following result: “If \(int(\lambda) = 0\), for a fuzzy regular \(F_\sigma\)-set in a fuzzy topological space \((X, T)\), then \(\lambda = \bigvee_{i=1}^{\infty}(cl(\lambda_i))\), where \((\lambda_i)'s\) are fuzzy \(\beta\)-closed sets in \((X, T)\), is a fuzzy first category set in \((X, T)\)”.

Proposition 4.6 If a fuzzy regular \(G_\delta\)-set \(\lambda\) is a fuzzy dense set in a fuzzy topological space \((X, T)\), then \(\lambda\) is a fuzzy residual set in \((X, T)\).

Proof: Let \(\lambda\) be a fuzzy regular \(G_\delta\)-set with \(cl(\lambda) = 1\). Then \(1 - \lambda\) is a fuzzy regular \(F_\sigma\)-set with \(1 - cl(\lambda) = 0\). That is, \(1 - \lambda\) is a fuzzy regular \(F_\sigma\)-set with \(int(1 - \lambda) = 0\). Then by proposition 4.5, \(1 - \lambda\) is a fuzzy first category set in \((X, T)\). Therefore \(\lambda\) is a fuzzy residual set in \((X, T)\).

Proposition 4.7 If a fuzzy topological space \((X, T)\) is a fuzzy regular Volterra space, then \(cl(\bigwedge_{i=1}^{N}(\lambda_i)) = 1\) where \((\lambda_i)'s\) are fuzzy residual sets in \((X, T)\).

Proof: Let \((X, T)\) be a fuzzy regular Volterra space. Then \(cl(\bigwedge_{i=1}^{N}(\lambda_i)) = 1\), where \((\lambda_i)'s\) are fuzzy dense and fuzzy regular \(G_\delta\)-sets in \((X, T)\). By proposition 4.6
(λᵢ)’s are fuzzy residual sets in (X, T). Hence \(\text{cl} \left(\bigwedge_{i=1}^{N} (\lambda_i) \right) = 1 \), where (λᵢ)’s are fuzzy residual sets in (X, T).

Proposition 4.8 If a fuzzy topological space (X, T) is a fuzzy regular Volterra space, then \(\text{int} \left(\bigvee_{i=1}^{N} (\mu_i) \right) = 0 \), where (μᵢ)’s are fuzzy first category sets in (X, T).

Proof: Let (X, T) be a fuzzy regular Volterra space. Then \(\text{cl} \left(\bigwedge_{i=1}^{N} (\lambda_i) \right) = 1 \), where (λᵢ)’s are fuzzy dense and fuzzy regular Gδ-sets in (X, T). Now \(1 - \text{cl} \left(\bigwedge_{i=1}^{N} (\lambda_i) \right) = 0 \) implies that \(\text{int} \left(1 - \bigwedge_{i=1}^{N} (\lambda_i) \right) = 0 \). Then, \(\text{int} \left(\bigvee_{i=1}^{N} (1 - \lambda_i) \right) = 0 \).

Now (λᵢ)’s are fuzzy regular Gδ-sets in (X, T) implies that \((1 - \lambda_i)’ \)’s are fuzzy regular Fσ-sets in (X, T). Also \(\text{cl}(\lambda_i) = 1 \) implies that \(1 - \text{cl}(\lambda_i) = 0 \). Then \(\text{int}(1 - \lambda_i) = 0 \). Hence, \((1 - \lambda_i)’ \)’s are fuzzy regular Fσ-sets with \(\text{int}(1 - \lambda_i) = 0 \). Therefore by proposition 4.5, \((1 - \lambda_i)’ \)’s are fuzzy first category sets in (X, T). Let \(\mu_i = 1 - \lambda_i \). Hence if (X, T) is a fuzzy regular Volterra space, then \(\text{int} \left(\bigvee_{i=1}^{N} (\mu_i) \right) = 0 \), where (μᵢ)’s are fuzzy first category sets in (X, T).

5.Conclusion

In this paper, the concepts of fuzzy regular Gδ-sets, fuzzy regular Fσ-sets and fuzzy regular Volterra spaces have introduced and studied. Several characterizations of fuzzy regular Volterra spaces have established in this paper.

References

